Абсолютная и относительная скорости

1.3.1.Описание сложного движения точки

Пусть имеются две разные системы отсчета, относительно которых исследуется движение некоторой материальной точки М, причем одна из этих систем отсчета считается неподвижной, или абсолютной, а другая является подвижной (в качестве абсолютной обычно выступает инерциальная система отсчета). Движение точки М относительно неподвижной системы отсчета называется абсолютным движением этой точки, а движение относительно подвижной системы отсчета — относительным. Сложным движением точки М называется такое абсолютное ее движение, которое можно представить как суперпозицию (композицию, результат «сложения») относительного и переносного её движений. При этом переносным называется движение точки М вместе с подвижной системой отсчета относительно неподвижной.

1.3.2.Относительная, переносная и абсолютная скорости точки

Относительная (relatif (фр.))скорость точки — это её скорость относительно подвижной системы отсчета (рассчитанная при «замороженном» переносном движении).

Переносная (emporter) скорость – скорость, которой обладала

бы точка при «замороженном» относительном движении; иначе говоря, это скорость того пункта подвижной системы отсчета, в котором находится точка в расчетный момент времени.

Абсолютная (absolu) скорость – скорость точки относительно неподвижной системы отсчета.

1.3.3. Теорема о сложении скоростей при сложном движении точки

1.3.4. Теорема Кориолиса о сложении ускорений

где — ускорение Кориолиса, — вектор угловой скорости подвижной системы отсчета. Если этот вектор коллинеарен вектору относительной скорости или равен нулю (при поступательном движении подвижной системы отсчета), то кориолисово ускорение отсутствует.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Для студента самое главное не сдать экзамен, а вовремя вспомнить про него. 10297 — | 7620 — или читать все.

91.146.8.87 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Здесь мы покажем, что при сложном движении, абсолютная скорость точки равна векторной сумме относительной и переносной скоростей:
.
Абсолютное ускорение точки равно векторной сумме относительного, переносного и кориолисова (поворотного) ускорений:
,
где – кориолисово ускорение.

Пример применения изложенной ниже теории приводится на странице “Сложное движение точки. Пример решения задачи”.

Сложное (составное) движение точки

Часто встречаются случаи, когда точка совершает известное движение относительно некоторого твердого тела. А это тело, в свою очередь, движется относительно неподвижной системы координат. Причем движение точки относительно тела и закон движения тела относительно неподвижной системы координат известны или заданы. Требуется найти кинематические величины (скорость и ускорение) точки относительно неподвижной системы координат.

Читайте также:  Как настроить роутер подключенный к другому роутеру

Такое движение точки называется сложным или составным.

Сложное или составное движение точки – это движение в подвижной системе координат. То есть движение точки описывается в системе координат, которая сама совершает движение относительно неподвижной системы координат.

Далее, для ясности изложения, будем считать, что подвижная система координат жестко связана с некоторым твердым телом. Мы будем рассматривать движение точки относительно тела (относительное движение) и движение тела относительно неподвижной системы координат (переносное движение).

Относительное движение точки при сложном движении – это движение точки относительно тела (подвижной системы координат) считая, что тело покоится.

Переносное движение точки при сложном движении – это движение точки, жестко связанной телом, вызванное движением тела.

Абсолютное движение точки при сложном движении – это движение точки относительно неподвижной системы координат, вызванное движением тела и движением точки относительно тела.

Пусть Oxyz – неподвижная система координат, On xo yo zo – подвижная система координат, жестко связанная с телом. Пусть – единичные векторы (орты), направленные вдоль осей xo , yo , zo подвижной системы координат. Тогда радиус-вектор точки M в неподвижной системе определяется по формуле:
(1) ,
где – радиус-вектор точки On – начала подвижной системы координат, связанной с телом.

Относительная скорость и ускорение

При относительном движении изменяются координаты xo , yo , zo точки относительно тела. А векторы являются постоянными, не зависящими от времени. Дифференцируя (1) по времени, считая постоянными, получаем формулы для относительной скорости и ускорения:
(2) ;
(3) .

Относительная скорость точки при сложном движении – это скорость точки при неподвижном положении тела (подвижной системы координат), вызванная движением точки относительно тела.

Относительное ускорение точки при сложном движении – это ускорение точки при неподвижном положении тела, вызванное движением точки относительно тела.

Переносная скорость и ускорение

При переносном движении изменяются векторы , определяющие положение тела. Относительные координаты точки xo , yo , zo являются постоянными. Дифференцируя (1) по времени, считая xo , yo , zo постоянными, получаем формулы для переносной скорости и ускорения:
(4) ;
(5) .

Переносная скорость точки при сложном движении – это скорость точки, жестко связанной с телом, вызванная движением тела.

Переносное ускорение точки при сложном движении – это ускорение точки, жестко связанной с телом, вызванное движением тела.

Производные по времени от – это скорость и ускорение начала подвижной системы координат On : ; .

Найдем формулы для производных по времени от векторов . Для этого возьмем две произвольные точки твердого тела A и B . Их скорости связаны соотношением:

(см. страницу “Скорость и ускорение точек твердого тела”). Рассмотрим вектор , проведенный из точки A в точку B . Тогда
.
Дифференцируем по времени и применяем предыдущую формулу:
.
Итак, мы нашли формулу для производной по времени от вектора, соединяющего две точки тела:
.
Поскольку векторы жестко связаны с телом, то их производные по времени определяются по этой формуле:
(6) , , .

Читайте также:  Как посмотреть в вк где ставил лайки

Подставляем в (4):

.
Таким образом, выражение (4) приводит к формуле для скорости точек твердого тела.

Выполняя подобные преобразования над формулой (5), получим формулу для ускорения точек твердого тела:
,
где – угловое ускорение тела.

Абсолютная скорость и ускорение

При абсолютном движении изменяются как векторы , определяющие положение тела, так и относительные координаты точки xo , yo , zo .

Абсолютная скорость точки при сложном движении – это скорость точки в неподвижной системе координат.

Абсолютное ускорение точки при сложном движении – это ускорение точки в неподвижной системе координат.

Теорема о сложении скоростей

При составном движении абсолютная скорость точки равна векторной сумме относительной и переносной скоростей:
.

Доказательство

Дифференцируем (1) по времени, применяя правила дифференцирования суммы и произведения. Затем подставляем (2) и (4).
(1) ;
(7)
.

Теорема Кориолиса о сложении ускорений

При составном движении абсолютное ускорение точки равно векторной сумме относительного, переносного и кориолисова (поворотного) ускорений:
,
где
– кориолисово ускорение.

Доказательство

Дифференцируем (7) по времени, применяя правила дифференцирования суммы и произведения. Затем подставляем (3) и (5).
(7) .

.

В последнем члене применим (6) и (2).

.
Тогда
.

Автор: Олег Одинцов . Опубликовано: 23-10-2015

Основные задачи кинематики сложного движения заключаются в установлении зависимостей между кинематическими характеристиками абсолютного и относительного движений точки (или тела) и характеристиками движения подвижной системы отсчета, то есть переносного движения. Для точки эти зависимости являются следующими: абсолютная скорость точки равна геометрической сумме относительной и переносной скоростей, то есть

.

Ускорение

Связь ускорений можно найти путём дифференцирования связи для скоростей, не забывая, что координатные векторы подвижной системы координат также могут зависеть от времени.

Абсолютное ускорение точки равно геометрической сумме трёх ускорений — относительного, переносного и кориолисова, то есть

.

Кинематика сложного движения тела

Для твёрдого тела, когда все составные (то есть относительные и переносные) движения являются поступательными, абсолютное движение также является поступательным со скоростью, равной геометрической сумме скоростей составных движений. Если составные движения тела являются вращательными вокруг осей, пересекающихся в одной точке (как, например, у гироскопа), то результирующее движение также является вращательным вокруг этой точки с мгновенной угловой скоростью, равной геометрической сумме угловых скоростей составных движений. Если же составными движениями тела являются и поступательные, и вращательные, то результирующее движение в общем случае будет слагаться из серии мгновенных винтовых движений.

Рассчитать взаимосвязь скоростей разных точек твёрдого тела в разных системах отсчёта можно с помощью комбинирования формулы сложения скоростей и формулы Эйлера для связи скоростей точек твёрдого тела. Связь ускорений находится простым дифференцированием полученного векторного равенства по времени.

Читайте также:  После установки винды черный экран

Динамика сложного движения точки

При рассмотрении движения в неинерциальной СО нарушаются первые 2 закона Ньютона. Чтобы обеспечить формальное их выполнение, обычно вводятся дополнительные, фиктивные (не существующие на самом деле), силы инерции: центробежная сила и сила Кориолиса. Выражения для этих сил получаются из связи ускорений (предыдущий раздел).

Релятивистская механика

Скорость

При скоростях, близких к скорости света, преобразования Галилея не являются точно инвариантными и классическая формула сложения скоростей перестаёт выполняться. Вместо этого, инвариантными являются преобразования Лоренца, а связь скоростей в двух инерциальных СО получается следующей:

в предположении, что скорость направлена вдоль оси х системы S. Легко убедиться, что в пределе нерелятивистских скоростей преобразования Лоренца сводятся к преобразованиям Галилея.

Однако вводится величина — быстрота — которая аддитивна при переходе от одной СО к другой.

Неинерциальные СО

Связь скоростей и ускорений в системах отсчёта, движущихся друг относительно друга ускоренно, является значительно более сложной и определяется локальными свойствами пространства в рассматриваемых точках (зависит от производной тензора Римана).

Литература

  • Н. Г. Четаев. «Теоретическая механика». М.: Наука. 1987. 368 с.

См. также

Ссылки

Wikimedia Foundation . 2010 .

Смотреть что такое "Абсолютная, относительная и переносная скорости" в других словарях:

Абсолютная относительная и переносная скорости — Скорость (часто обозначается , от англ. velocity или фр. vitesse) векторная величина, характеризующая быстроту перемещения и направление движения материальной точки в пространстве относительно выбранной системы отсчёта. Этим же словом может… … Википедия

Относительная скорость — В физике, при рассмотрении нескольких систем отсчёта (СО) возникает понятие сложного движения когда материальная точка движется относительно какой либо системы отсчёта, а та, в свою очередь, движется относительно другой системы отсчёта. При этом … Википедия

ГОСТ 24375-80: Радиосвязь. Термины и определения — Терминология ГОСТ 24375 80: Радиосвязь. Термины и определения оригинал документа: 304. Абсолютная нестабильность частоты радиопередатчика Нестабильность частоты передатчика Определения термина из разных документов: Абсолютная нестабильность… … Словарь-справочник терминов нормативно-технической документации

Сложное движение — В физике, при рассмотрении нескольких систем отсчёта (СО) возникает понятие сложного движения когда материальная точка движется относительно какой либо системы отсчёта, а та, в свою очередь, движется относительно другой системы отсчёта. При … Википедия

Основные — 1. Основные положения системы сельской телефонной связи. М., ЦНИИС, 1974. 145 с. Источник: Руководство: Руководство по проектированию сети электросвязи в сельской местности 16. Основные положения по учету труда и заработной платы в… … Словарь-справочник терминов нормативно-технической документации