Центральный процессор персонального компьютера выполняет обработку

Персональный компьютер состоит из множества компонентов, соединенных в единую систему. Взаимодействие и контроль между ними осуществляется благодаря центральному процессору, выполняет роль электронного мозга ПК. Без него любая техника, будь то ноутбук, планшет или системный блок – груда железок. Давайте подробнее разберемся, как работает центральный процессор компьютера и какова его структура.

Виды процессоров

Прежде чем переходить к рассмотрению ключевых характеристик ЦП, необходимо разобраться каких видов он бывает. Центральных процессоров или CPU, как их называют заграницей много, и они разделяются по следующим критериям.

  • Бывают слабые, одноядерные модели, производство которых остановлено и приобрести их можно только после долгих поисков;
  • Средние и мощные модели, имеющие от 2 до 16 ядер;

По способу применения:

По фирме производителю:

  • Центральный процессор от компании Intel;
  • ЦП от компании AMD;

Обратите внимание! Помимо Интеловских и Амдэшных ЦП существуют продукты, выпускаемые под брендами других компаний, но они мало востребованы, составляя малую часть об общего объема товаров на рынке компьютерного железа.

Многие пользователи ошибочно полагают, что продукция компании Intel отличается от AMD только названием, но это далеко не так. Структура каждого центрального процессора, произведенного под торговой маркой данных компаний, существенно отличается от конкурентов. Благодаря этому, они обладают своими достоинствами и недостатками. Например, продукция компании Intel наделена следующими положительными характеристиками, выгодно отличающими их центральные процессоры от AMD:

  1. Большинство производителей комплектующих изделий для ПК подгоняют свою продукцию под стандарты CPU от Intel;
  2. Во время работы потребляют меньшее количество энергии, снижая нагрузку на систему;
  3. Показывают большее быстродействие при работе с одной программой;
  4. Лучший выбор для игровых сборок системных блоков;

Товары от AMD также имеют ряд характеристик, позволяющих им активно конкурировать на рынке компьютерного железа:

  • В отличии от ЦП производства Интел, центральные процессоры от АМД имеют функцию разгона, увеличивающую исходную мощность до 20%;
  • Лучшее соотношение цены и качества товаров;
  • Графические ядра, встроенные в ЦП, обладают большими возможностями чем Интеловские, позволяя быстрее работать с видео;

Описание центрального процессора

Итак, с видами ЦП и их отличительными особенностями мы разобрались, пора переходить к описанию самого изделия и разобраться в том, что это такое. Для простоты понимания разобьём его на несколько пунктов, выделяя в них ключевые особенности изделия:

  1. Назначение ЦП;
  2. Его строение;
  3. Базовые характеристики;

С их помощью мы разберемся как работает процессор и как он устроен.

Назначение

Главная задача любого центрального процессора – выполнение вычислительных процессов, с помощью которых устройствам передается набор команд, необходимых для выполнения. Команды находятся в ОЗУ ПК и считываются CPU оттуда напрямую. Соответственно, чем выше вычислительные мощности процессора, тем большим быстродействием обладает вся система.

Структура

Общая структура любого центрального процессора состоит из следующих блоков:

  1. Блока интерфейса;
  2. Операционного блока;

Блок интерфейса содержит следующие компоненты:

  • Адресные регистры;
  • Регистры памяти, в которых осуществляется хранение кодов передаваемых команд, выполнение которых планируется в ближайшее время;
  • Устройства управления – с его помощью формируются управляющие команды, которые в дальнейшем выполняются ЦП;
  • Схемы управления, отвечающие за работу портов и системных шин;

В операционный блок входят:

  1. Микропроцессорная память. Состоит из: сегментных регистров, регистров признаков, регистров общего назначения и регистров подсчитывающих количество команд;
  2. Арифметико-логическое устройство. С его помощью информация интерпретируется в набор логических, или арифметических операций;

Обратите внимание! Операционный блок и блок интерфейса работают в параллельном режиме, но интерфейсная часть находится на шаг впереди, записывая в блок регистров команды, которые в дальнейшем выполняются операционной частью.

Системная шина служит для передачи сигналов от центрального процессора к другим компонентам устройства. С каждым новым поколением структура процессора немного меняется и последние разработки сильно отличаются от первых процессоров, используемых на заре становления компьютерных технологий.

Характеристики

Характеристики любого центрального процессора оказывают большое влияние на быстродействие как отдельных элементов системы, так и всего комплекса устройств в целом. Среди основных характеристик, влияющих на параметры производительности, выделяют:

  • Тактовая частота; Для обработки одного фрагмента данных, передаваемых внутри ПК, требуется один такт времени. Отсюда следует, что чем выше тактовая частота приобретаемого ЦП, тем быстрее работает устройство обрабатывая за раз большие массивы информации. Измеряется тактовая частота в мегагерцах. Один мегагерц эквивалентен 1 миллиону тактов в секунду. Старые модели имели маленькую частоту, из-за чего скорость работы оставляла желать лучшего. Современные модели имеют большие показатели тактовой частоты, позволяя быстро обрабатывать и выполнять самые сложные наборы команд.
  • Разрядность; Информация, предназначенная для обработки ЦП, попадает в него через внешние шины. От разрядности зависит какой объем данных передается за один раз. Это влияет на быстродействие. Старые модели были 16 разрядными, а современные имеют 32 или 64 разряда. 64 разрядная система на сегодняшний день считается самой продвинутой и под нее разрабатываются современные программные продукты и устройства.
  • Кеш – память; Используется для увеличения работы устройства в компьютере, создавая буферную зону, хранящую копию последнего массива данных, обработанного процессором. Это дает возможность быстро выполнить схожую операцию в случае необходимости, без траты времени на обращение к общей памяти персонального компьютера.
  • Сокет; Вариант крепления устройства к материнской плате. Разные поколения процессоров, как и материнских плат имеют собственный поддерживаемых сокетов. Это стоит учитывать при покупке. У разных производителей сокеты также отличаются друг от друга.
  • Внутренний множитель частоты; Процессор и материнская плата работают на разных частотах и для их синхронизации друг с другом существует множитель частоты. Базовой или опорной считается рабочая частота материнской платы, которая умножается на персональный коэффициент ЦП.

Из побочных характеристик, напрямую не относящихся от технологии производства, выделяют тепловыделение и количество потребляемой во время работы энергии. Мощные устройства выделяют много тепла и требуют большую энергетическую подпитку во время работы. Для их полноценной работы применяются вспомогательные системы охлаждения.

Читайте также:  Принтер canon заправка картриджей в домашних условиях

Центральный процессор – это центральное устройство компьютера, которое выполняет операции по обработке данных и управляет периферийными устройствами компьютера. У компьютеров четвёртого поколения и старше функции центрального процессора выполняет микропроцессор на основе СБИС, содержащей несколько миллионов элементов, конструктивно созданный на полупроводниковом кристалле путём применения сложной микроэлектронной технологии.
На самом деле то, что мы сегодня называем процессором, правильно называть микропроцессором. Разница есть и определяется видом устройства и его историческим развитием.

Первый процессор (Intel 4004) появился в 1971 году.

Внешне представляет собой кремневую пластинку с миллионами и миллиардами (на сегодняшний день) транзисторов и каналов для прохождения сигналов.

Назначение процессора – это автоматическое выполнение программы. Другими словами, он является основным компонентом любого компьютера.

В состав центрального процессора входят:
устройство управления (УУ);
арифметико-логическое устройство (АЛУ);
запоминающее устройство (ЗУ) на основе регистров процессорной памяти и кэш-памяти процессора;
генератор тактовой частоты (ГТЧ).

Устройство управления организует процесс выполнения программ и координирует взаимодействие всех устройств ЭВМ во время её работы.

Арифметико-логическое устройство выполняет арифметические и логические операции над данными: сложение, вычитание, умножение, деление, сравнение и др.

Запоминающее устройство – это внутренняя память процессора. Регистры служит промежуточной быстрой памятью, используя которые, процессор выполняет расчёты и сохраняет промежуточные результаты. Для ускорения работы с оперативной памятью используется кэш-память, в которую с опережением подкачиваются команды и данные из оперативной памяти, необходимые процессору для последующих операций.

Генератор тактовой частотыгенерирует электрические импульсы, синхронизирующие работу всех узлов компьютера. В ритме ГТЧ работает центральный процессор.

К основным характеристикам процессора относится Быстродействие (вычислительная мощность) – это среднее число операций процессора в секунду. Измеряется в количестве операций над числами с плавающей точкой в секунду (FLOPS). Быстродействие зависит от следующих параметров:

Тактовая частота в МГц. ТЧравна количеству тактов в секунду. Такт – это промежуток времени между началом подачи текущего импульса ГТЧ и началом подачи следующего.

Разрядность процессора – это максимальное количество бит информации, которые могут обрабатываться и передаваться процессором одновременно. Разрядность процессора определяется разрядностью регистров, в которые помещаются обрабатываемые данные.

Система команд процессора представляет собой набор отдельных операций, которые может выполнить процессор данного типа. Разные модели микропроцессоров выполняют одни и те же операции за разное число тактов. Чем выше модель микропроцессора, тем, как правило, меньше тактов требуется для выполнения одних и тех же операций.

Размер кэш-памяти

Подсистема памяти

Оперативная память.

Другим важным функциональным узлом компьютера является запоминающее устройство, или память. Память, в которой хранятся исполняемые программы и данные, называется оперативным запоми­нающим устройством (ОЗУ) илиRAM (RandomAccessMemory) — па­мятью со свободным доступом. ОЗУ позволяет записывать и считы­вать информацию из ячейки, обращаясь к ней по ее номеру или адресу. Ячейка памяти имеет стандартное число двоичных разрядов. В настоящее время стандартный размер ячейки ОЗУ равняется од­ному байту Информация в ОЗУ сохраняется все время, пока на схе­мы памяти подается питание, т.е она является энергозависимой.

Существует два вида ОЗУ, отличающиеся техническими харак­теристиками: динамическое ОЗУ, илиDRAM (DynamicRAM), и ста­тическое ОЗУ, илиSRAM (StaticRAM). Разряд динамического ОЗУ построен на одном транзисторе и конденсаторе, наличие или отсут­ствие заряда на котором определяет значение, записанное в данном бите. При записи или чтении информации из такой ячейки требует­ся время для накопления (стекания) заряда на конденсаторе, Поэто­му быстродействие динамического ОЗУ на порядок ниже, чем у ста­тического ОЗУ, разряд которого представляет собой триггер на четырех или шести транзисторах. Однако из-за большего числа эле­ментов на один разряд в одну СБИС статического ОЗУ помещается гораздо меньше элементов, чем у динамического ОЗУ. Кроме этого статические ОЗУ более энергоемки и значительно до­роже. Обычно, в качестве оперативной или видеопамяти использу­ется динамическое ОЗУ Статическое ОЗУ используется в качестве небольшой буферной сверхбыстродействующей памяти(кэш-памяти). В кэш-память из динамической памяти заносятся команды и данные, кото­рые процессор будет выполнять в данный момент.

Скорость работы ОЗУ ниже, чем быстродействие процессора, поэтому применяются различные методы для повышения ее произ­водительности. Одним из способов увеличения быстродействия ди­намического ОЗУ является размещение в одном корпусе микросхе­мы СБИС нескольких модулей памяти с чередованием адресов. Байт с нулевым адресом находится в первом модуле, байт с первым адре­сом во втором модуле, байт со вторым адресом в первом модуле и т.д. Поскольку обращение к памяти состоит из нескольких этапов: установка адреса, выбор ячейки, чтение, восстановление, то эти этапы можно совместить во времени для разных модулей. Другим способом увеличения быстродействия является чтение из памяти со­держимого ячейки с заданным адресом и нескольких ячеек, распо­ложенных рядом. Они сохраняются в специальных регистрах — за­щелках. Если следующий адрес указывает на одну из уже считанных ячеек, то ее содержимое читается из защелки.

Несмотря на разработку новых типов схем динамических ОЗУ, снижающую время обращения к ним, это время все еще остается значительным и сдерживает дальнейшее увеличение производитель­ности процессора. Для уменьшения влияния времени обращения процессора к ОЗУ и увеличения производительности компьютера дополнительно устанавливается сверхбыстродействующая буферная память, выполненная на микросхемах статической памяти. Эта па­мять называется кэш-памятью (от англ.cache — запас). Время обра­щения к данным в кэш-памяти на порядок ниже, чем у ОЗУ, и срав­нимо со скоростью работы самого процессора.

Запись в кэш-память осуществляется параллельно с запросом процессора к ОЗУ. Данные, выбираемые процессором, одновремен­но копируются и в кэш-память. Если процессор повторно обратит­ся к тем же данным, то они будут считаны уже из кэш-памяти. Та­кая же операция происходит и при записи процессором данных в память. Они записываются в кэш-память, а затем в интервалы, ког­да шина свободна, переписываются в ОЗУ. Современные процессо­ры имеют встроенную кэш-память, которая находится внутри про­цессора, кроме этого есть кэш-память и на системной плате. Чтобы их различать, кэш-память делится на уровни. На кристалле самого процессора находится кэш-память первого уровня, она имеет самый меньший объем и самую высокую скорость обмена данными. В корпусе процессора, но на отдельном кристалле находится кэш-­память второго уровня, объем которой больше, чем у памяти первого уровня. И, наконец, кэш-память третьего уровня (самая большая по объему) расположена на системной плате.

Читайте также:  Как нарисовать волейбольный мяч карандашом поэтапно

Управление записью и считыванием данных в кэш-память вы­полняется автоматически. Когда кэш-память полностью заполняется, то для записи последующих данных устройство управления кэш­-памяти по специальному алгоритму автоматически удаляет те данные, которые реже всего использовались процессором на текущий момент. Использование процессором кэш-памяти увеличивает производительность процессора, особенно в тех случаях, когда происходит последовательное преобразование относительно небольшого числа данных, которые постоянно во время преобразования хранятся в кэш-памяти.

Не нашли то, что искали? Воспользуйтесь поиском:

Центральный процессор – это высокоинтегрированная сверхбольшая интегральная схема сложной структуры в едином полупроводниковом кристалле. В англоязычной литературе ЦП называют CPU — central processor unit или main processor.

Центральный процессорэто основной рабочий компонент компьютера, который выполняет основные логические и арифметические операции, заданные программой, управляет вычислительным процессом и координирует работу всех устройств компьютера.

Осуществляет координацию потоков данных и их обработку. Аппаратура ЦП обеспечивает эффективную и гибкую защиту памяти, контролируемый доступ к ресурсам оперативной системы, изоляцию индивидуальных прикладных программ, малое время реакций на прерывания.

ЦП можно назвать сердцем ЭВМ. Архитектура ЭВМ определяется типом центрального процессора. Для размещения процессора на материнской плате используется специальное гнездо, называемое Socket или другое гнездо, похожее на разъем для плат расширения – Slot1 (рис.1).

Проблема теплообмена стала актуальной с повышением рабочей тактовой частоты процессоров и ужесточением технологических норм при производстве кристаллов. Снижение рабочей температуры процессора на 10 градусов ведет к удвоению времени его безотказной работы, при этом скорость движения электронов в полупроводниках также возрастает вдвое. Для охлаждения процессора используется малогабаритный вентилятор, установленный на радиаторе — CPU Cooler. Эта система снижает температуру процессора примерно на 40 градусов.

Современные процессоры выполняются в виде микропроцессоров (МП). Физически МП представляет собой интегральную схему – тонкую пластинку кристаллического кремния прямоугольной формы площадью всего несколько квадратных миллиметров, на которой размещены схемы, реализующие все функции процессора. Кристалл-пластинка обычно помещается в пластмассовый или керамический плоский корпус и соединяется золотыми проводками с металлическими штырьками, что бы его можно было присоединить к системной плате компьютера.

Микропроцессор выполняет следующие функции:

· Выборку команд программы из основной памяти;

· Выполнение арифметических, логических и других операций, закодированных в командах;

· Управление пересылкой информации между регистрами (регистр-быстродействующая ячейка памяти) и основной памятью, между устройствами ввода/вывода;

· Отработку сигналов от устройств ввода/вывода, в том числе реализацию прерываний с этих устройств;

· Управление и координацию работы основных узлов МП.

Большинство современных процессоров для ПК основаны на той или иной версии циклического процесса последовательной обработки информации, изобретенного Джоном Фон Нейманом.

Этапы цикла выполнения:

1. процессор выставляет число, хранящееся в регистре счетчика команд, на шину адреса, и отдает памяти команду чтения;

2. выставленное число является для памяти адресом;

3. память, получив адрес и команду чтения, выставляет содержимое, хранящееся по этому адресу, на шину данных и сообщает о готовности;

4. процессор получает число с шины данных, интерпретирует его как команду (машинную инструкцию) из своей системы команд и исполняет ее;

5. если последняя команда не является командой перехода, процессор увеличивает на 1-цу число, хранящееся в счетчике команд. В результате там образуется адрес следующей команды;

6. снова выполняется п.1.

Микропроцессоры можно классифицировать (рис.2) по:

· принципу реализации (RISC, CISC, VLIW, MISC);

· внутренней структуре (гарвардская, фон-Неймана);

· системе команд (аккумуляторные, с регистрами общего назначения).

Рис.2. Классификация микропроцессоров.

Структура ЦП

Каждый ЦП имеет:

1) определённое число элементов памяти – регистров (разрядность внутренних регистров – 1 – 4 машинных слова – 8- 64 бита);

2) арифметико – логическое устройство (АЛУ);

3) устройство управления (УУ).

МПП (микро-процессорная память, кэш) служит для кратковременного хранения, записи и выдачи информации, непосредственно используемой в вычислениях в ближайшие такты работы машины.

МПП строится на регистрах и используется для обеспечения высокого быстродействия. Регистры (или ЗУ) используются для временного хранения исполняемой команды, адресов памяти, обрабатываемых данных и другой внутренней информации ЦП. Над содержимым некоторых регистров специальные электронные схемы могут выполнять некоторые манипуляции. Например, "вырезать" отдельные части команды для последующего их использования или выполнять определенные арифметические операции над числами. Основным элементом регистра является электронная схема, называемая триггером, которая способна хранить одну двоичную цифру (разряд двоичного кода). Регистр представляет собой совокупность триггеров, связанных друг с другом определённым образом общей системой управления.

Существует несколько типов регистров, отличающихся видом выполняемых операций. Некоторые важные регистры имеют свои названия, например:

сумматор – регистр АЛУ, участвующий в выполнении каждой операции;

счетчик команд – регистр УУ, содержимое которого соответствует адресу очередной выполняемой команды; служит для автоматической выборки программы из последовательных ячеек памяти;

регистр команд – регистр УУ для хранения кода команды на период времени, необходимый для ее выполнения. Часть его разрядов используется для хранения кода операции, остальные – для хранения кодов адресов операндов.

Команда – это описание элементарной операции, которую должен выполнить компьютер. В общем случае, команда содержит следующую информацию: код выполняемой операции; указания по определению операндов (или их адресов);
указания по размещению получаемого результата.

Читайте также:  Adobe flash player инсталлятор

Адрес (указатель на ячейку памяти) символ или группа символов (код), которые идентифицируют регистр, отдельные части памяти и другие источники данных. Каждый адрес уникален, процессор использует его для поиска инструкций программы и данных, хранящихся в этой области памяти.

Помимо регистров в процессорах (начиная с 80486) имеется и сверхбыстрая память небольшого объёма – кэш (сache) – запоминающее устройство с малым временем доступа. Кэш – буфер между ЦП и оперативной памятью (буфер обмена между медленным устройством хранения данных и более быстрым) – процессорная память. Принцип его действия основан на том, что простой более быстрого устройства сильно влияет на суммарную производительность, а также – что с наибольшей вероятностью запрашиваются данные, сохраненные сравнительно недавно. Поэтому между устройствами помещают небольшой (по сравнению со всеми хранимыми данными) буфер относительно быстрой памяти (обычно статической памяти SRAM, Static Random Access Memory, которая использует статический триггер, выполненный на транзисторных ключах). Это позволяет снизить потери быстрого устройства как на записи (запись производится в быстрый буфер, а последующая перезапись в медленное устройство производится уже без участия быстрого), так и на чтении (недавно записанные данные доступны для чтения из "быстрого" буфера

Применение статической памяти, как правило, ограничено относительно небольшой по объему кэш-памятью первого (Level 1 – L1), второго (L2) или третьего (L3) уровней (если она не интегрирована на один кристалл с процессором). Так, объем L2 (L3) обычно не превышает 1-2 Мб (чаще всего он составляет 256-512 Кб). Объем еще более быстрого L1 (как правило, интегрируемого на кристалле с процессором) – вообще до 64 Кб.

Арифметико – логическое устройство производит арифметическую и логическую обработку данных.

Устройство управления формирует и подает во все блоки машины в нужные моменты времени определенные сигналы управления (управляющие импульсы), обусловленные спецификой выполняемой операции и результатами предыдущих операций; формирует адреса ячеек памяти, используемых выполняемой операцией, и передает эти адреса в соответствующие блоки ЭВМ; опорную последовательность импульсов устройство управления получает от генератора тактовых импульсов.

Генератор тактовых импульсов вырабатывает последовательность электрических импульсов; частота генерируемых импульсов определяет тактовую частоту машины. Каждый импульс переключает шаг обработки, необходимый для завершения машинной команды (на одну команду может потребоваться несколько шагов). Промежуток времени между соседними импульсами определяет время одного такта работы машины или просто такт работы машины.

Такт – время для передачи некоторого значения от одного регистра к другому внутри ЦП.

Параметры ЦП

1) тип архитектуры или серия;

2) система поддерживаемых команд;

3) тактовая частота;

4) разрядность шины адреса и шины данных.

Тип архитектуры, как правило, определяется фирмой производителем оборудования (Intel, AMD – 95% рынка платформы х86 IBM PC, VIA). С типом архитектуры тесно связан набор поддерживаемых команд или инструкций, и их расширений. Эти два параметра, в основном, определяют качественный уровень возможностей персонального компьютера и в большой степени уровень его производительности.

Тактовая частота обработки информации. Тактом называют интервал времени менаду началом подачи двух последовательных импульсов электрического тока, синхронизирующих работу, различных устройств компьютера. Специальные импульсы для отсчета времени для всех электронных устройств вырабатывает тактовый генератор частоты, расположенный на СИСТЕМНОЙ плате Его главный элемент представляет собой кристалл кварца, обладающий стабильностью резонансной частоты. Тактовая частота определяется как количество тактов в секунду и измеряется в мегагерцах (1МГц = 1 млн тактов/с). Тактовая частота влияет на скорость работы, быстродействие МП. Переход к микропроцессору с большей тактовой частотой означает повышение скорое обработки информации. Говоря о быстродействии процессора имеют в виду количество операций, выполняемых им в секунду

Один из способов повышения быстродействия МП – использование кэш-памяти. Это позволяет избежать циклов ожидания в работе МП, пока информация из соответствующих схем памяти установится на системной шине данных компьютера. Таким образом, кэш-память функционально предназначена для согласования скорости-работы сравнительно медленных устройств с относительно быстрым МП. Благодаря преимуществам в архитектуре процессоры с меньшей тактовой частотой могут иметь большее быстродействие.

Частота генератора тактовых импульсов (тактовая частота – CPU-clock) является одной из основных характеристик персонального компьютера и во многом определяет скорость его работы, ибо каждая операция в машине выполняется за определенное количество тактов. Единица измерения – МГц (миллион тактов в секунду) или ГГц (миллиард тактов в секунду).

Разрядность– максимальная длина слова, которое может храниться в регистре. (1 разряд = бит – единица объёма памяти).

Шина– физический канал передачи электрических сигналов в ПК и связи между устройствами.

Шина адреса (адресная) ША – часть шины ЦП, выделенная для передачи адреса памяти или устройства.

Шина данных ШД – группа сигнальных линий (проводников), предназначенная для параллельной передачи данных между элементами ПК. Разрядность шины определяет пропускную способность ЦП.

Разрядность ШД ≤ ША.

Ёмкость регистров зависит от разрядности шины данных и определяет количество информации, которое может быть обработано одновременно.

Адресное пространство памяти – определяется разрядностью адресных регистров и адресной шины ЦП.

Быстродействие ЦП – определяется тактовой частотой внутреннего генератора ЦП, набором команд, гибкостью, системой прерываний. Чем выше частота, тем выше быстродействие.

Производительность процессора = Количество исполняемых за такт инструкций х Тактовая частота

2. В виде чего выполняются современные процессоры?

3. Какие функции выполняет центральный процессор?

4. Что входит в структуру центрального процессора?

5. Какие параметры центрального процессора вы знаете?