Формула разложения кубического уравнения

Кубическое уравнение, содержащее коэффициенты с действительным корнем, остальные два считаются комплексно-сопряженной парой. Будут рассмотрены уравнения с двучленами и возвратные, а также с поиском рациональных корней. Вся информация будет подкреплена примерами.

Решение двучленного кубического уравнения вида A x 3 + B = 0

Кубическое уравнение, содержащее двучлен, имеет вид A x 3 + B = 0 . Его необходимо приводить к x 3 + B A = 0 с помощью деления на А , отличного от нуля. После чего можно применять формулу сокращенного умножения суммы кубов. Получаем, что

x 3 + B A = 0 x + B A 3 x 2 – B A 3 x + B A 2 3 = 0

Результат первой скобки примет вид x = – B A 3 , а квадратный трехчлен – x 2 – B A 3 x + B A 2 3 , причем только с комплексными корнями.

Найти корни кубического уравнения 2 x 3 – 3 = 0 .

Решение

Необходимо найти х из уравнения. Запишем:

2 x 3 – 3 = 0 x 3 – 3 2 = 0

Необходимо применить формулу сокращенного умножения. Тогда получим, что

x 3 – 3 2 = 0 x – 3 3 2 6 x 2 + 3 3 2 6 x + 9 2 3 = 0

Раскроем первую скобку и получим x = 3 3 2 6 . Вторая скобка не имеет действительных корней, потому как дискриминант меньше нуля.

Ответ: x = 3 3 2 6 .

Решение возвратного кубического уравнения вида A x 3 + B x 2 + B x + A = 0

Вид квадратного уравнения – A x 3 + B x 2 + B x + A = 0 , где значения А и В являются коэффициентами. Необходимо произвести группировку. Получим, что

A x 3 + B x 2 + B x + A = A x 3 + 1 + B x 2 + x = = A x + 1 x 2 – x + 1 + B x x + 1 = x + 1 A x 2 + x B – A + A

Корень уравнения равен х = – 1 , тогда для получения корней квадратного трехчлена A x 2 + x B – A + A необходимо задействовать через нахождение дискриминанта.

Решить уравнение вида 5 x 3 – 8 x 2 – 8 x + 5 = 0 .

Решение

Уравнение является возвратным. Необходимо произвести группировку. Получим, что

5 x 3 – 8 x 2 – 8 x + 5 = 5 x 3 + 1 – 8 x 2 + x = = 5 x + 1 x 2 – x + 1 – 8 x x + 1 = x + 1 5 x 2 – 5 x + 5 – 8 x = = x + 1 5 x 2 – 13 x + 5 = 0

Если х = – 1 является корнем уравнения, тогда необходимо найти корни заданного трехчлена 5 x 2 – 13 x + 5 :

5 x 2 – 13 x + 5 = 0 D = ( – 13 ) 2 – 4 · 5 · 5 = 69 x 1 = 13 + 69 2 · 5 = 13 10 + 69 10 x 2 = 13 – 69 2 · 5 = 13 10 – 69 10

Ответ:

x 1 = 13 10 + 69 10 x 2 = 13 10 – 69 10 x 3 = – 1

Решение кубических уравнений с рациональными корнями

Если х = 0 , то он является корнем уравнения вида A x 3 + B x 2 + C x + D = 0 . При свободном члене D = 0 уравнение принимает вид A x 3 + B x 2 + C x = 0 . При вынесении х за скобки получим, что уравнение изменится. При решении через дискриминант или Виета оно примет вид x A x 2 + B x + C = 0 .

Найти корни заданного уравнения 3 x 3 + 4 x 2 + 2 x = 0 .

Решение

3 x 3 + 4 x 2 + 2 x = 0 x 3 x 2 + 4 x + 2 = 0

Х = 0 – это корень уравнения. Следует найти корни квадратного трехчлена вида 3 x 2 + 4 x + 2 . Для этого необходимо приравнять к нулю и продолжить решение при помощи дискриминанта. Получим, что

D = 4 2 – 4 · 3 · 2 = – 8 . Так как его значение отрицательное, то корней трехчлена нет.

Ответ: х = 0 .

Когда коэффициенты уравнения A x 3 + B x 2 + C x + D = 0 целые, то в ответе можно получить иррациональные корни. Если A ≠ 1 , тогда при умножении на A 2 обеих частей уравнения проводится замена переменных, то есть у = А х :

A x 3 + B x 2 + C x + D = 0 A 3 · x 3 + B · A 2 · x 2 + C · A · A · x + D · A 2 = 0 y = A · x ⇒ y 3 + B · y 2 + C · A · y + D · A 2

Приходим к виду кубического уравнения. Корни могут быть целыми или рациональными. Чтобы получить тождественное равенство, необходимо произвести подстановку делителей в полученное уравнение. Тогда полученный y 1 будет являться корнем. Значит и корнем исходного уравнения вида x 1 = y 1 A . Необходимо произвести деление многочлена A x 3 + B x 2 + C x + D на x – x 1 . Тогда сможем найти корни квадратного трехчлена.

Найти корни заданного уравнения 2 x 3 – 11 x 2 + 12 x + 9 = 0 .

Решение

Необходимо произвести преобразование с помощью умножения на 2 2 обеих частей, причем с заменой переменной типа у = 2 х . Получаем, что

2 x 3 – 11 x 2 + 12 x + 9 = 0 2 3 x 3 – 11 · 2 2 x 2 + 24 · 2 x + 36 = 0 y = 2 x ⇒ y 3 – 11 y 2 + 24 y + 36 = 0

Свободный член равняется 36 , тогда необходимо зафиксировать все его делители:

Читайте также:  Как написать на ватсап с компьютера

± 1 , ± 2 , ± 3 , ± 4 , ± 6 , ± 9 , ± 12 , ± 36

Необходимо произвести подстановку y 3 – 11 y 2 + 24 y + 36 = 0 , чтобы получить тождество вида

1 3 – 11 · 1 2 + 24 · 1 + 36 = 50 ≠ 0 ( – 1 ) 3 – 11 · ( – 1 ) 2 + 24 · ( – 1 ) + 36 = 0

Отсюда видим, что у = – 1 – это корень. Значит, x = y 2 = – 1 2 .

Далее следует деление 2 x 3 – 11 x 2 + 12 x + 9 на x + 1 2 при помощи схемы Горнера:

x i Коэффициенты многочлена
2 – 11 12 9
– 0 . 5 2 – 11 + 2 · ( – 0 . 5 ) = – 12 12 – 12 · ( – 0 . 5 ) = 18 9 + 18 · ( – 0 . 5 ) = 0

2 x 3 – 11 x 2 + 12 x + 9 = x + 1 2 2 x 2 – 12 x + 18 = = 2 x + 1 2 x 2 – 6 x + 9

После чего необходимо найти корни квадратного уравнения вида x 2 – 6 x + 9 . Имеем, что уравнение следует привести к виду x 2 – 6 x + 9 = x – 3 2 , где х = 3 будет его корнем.

Ответ: x 1 = – 1 2 , x 2 , 3 = 3 .

Алгоритм можно применять для возвратных уравнений. Видно, что – 1 – это его корень, значит, левая часть может быть поделена на х + 1 . Только тогда можно будет найти корни квадратного трехчлена. При отсутствии рациональных корней применяются другие способы решения для разложения многочлена на множители.

Решение кубических уравнений по формуле Кардано

Нахождение кубических корней возможно при помощи формулы Кардано. При A 0 x 3 + A 1 x 2 + A 2 x + A 3 = 0 необходимо найти B 1 = A 1 A 0 , B 2 = A 2 A 0 , B 3 = A 3 A 0 .

После чего p = – B 1 2 3 + B 2 и q = 2 B 1 3 27 – B 1 B 2 3 + B 3 .

Полученные p и q в формулу Кардано. Получим, что

y = – q 2 + q 2 4 + p 3 27 3 + – q 2 – q 2 4 + p 3 27 3

Подбор кубических корней должен удовлетворять на выходе значению – p 3 . Тогда корни исходного уравнения x = y – B 1 3 . Рассмотрим решение предыдущего примера, используя формулу Кардано.

Найти корни заданного уравнения 2 x 3 – 11 x 2 + 12 x + 9 = 0 .

Решение

Видно, что A 0 = 2 , A 1 = – 11 , A 2 = 12 , A 3 = 9 .

Необходимо найти B 1 = A 1 A 0 = – 11 2 , B 2 = A 2 A 0 = 12 2 = 6 , B 3 = A 3 A 0 = 9 2 .

Отсюда следует, что

p = – B 1 2 3 + B 2 = – – 11 2 2 3 + 6 = – 121 12 + 6 = – 49 12 q = 2 B 1 3 27 – B 1 B 2 3 + B 3 = 2 · – 11 2 3 27 – – 11 2 · 6 3 + 9 2 = 343 108

Производим подстановку в формулу Кордано и получим

y = – q 2 + q 2 4 + p 3 27 3 + – q 2 – – q 2 4 + p 3 27 3 = = – 343 216 + 343 2 4 · 108 2 – 49 3 27 · 12 3 3 + – 343 216 – 343 2 4 · 108 2 – 49 3 27 · 12 3 3 = = – 343 216 3 + – 343 216 3

– 343 216 3 имеет три значения. Рассмотрим их ниже.

– 343 216 3 = 7 6 cos π + 2 π · k 3 + i · sin π + 2 π · k 3 , k = 0 , 1 , 2

Если k = 0 , тогда – 343 216 3 = 7 6 cos π 3 + i · sin π 3 = 7 6 1 2 + i · 3 2

Если k = 1 , тогда – 343 216 3 = 7 6 cosπ + i · sinπ = – 7 6

Если k = 2 , тогда – 343 216 3 = 7 6 cos 5 π 3 + i · sin 5 π 3 = 7 6 1 2 – i · 3 2

Необходимо произвести разбиение по парам, тогда получим – p 3 = 49 36 .

Тогда получим пары: 7 6 1 2 + i · 3 2 и 7 6 1 2 – i · 3 2 , – 7 6 и – 7 6 , 7 6 1 2 – i · 3 2 и 7 6 1 2 + i · 3 2 .

Преобразуем при помощи формулы Кордано:

y 1 = – 343 216 3 + – 343 216 3 = = 7 6 1 2 + i · 3 2 + 7 6 1 2 – i · 3 2 = 7 6 1 4 + 3 4 = 7 6 y 2 = – 343 216 3 + – 343 216 3 = – 7 6 + – 7 6 = – 14 6 y 3 = – 343 216 3 + – 343 216 3 = = 7 6 1 2 – i · 3 2 + 7 6 1 2 + i · 3 2 = 7 6 1 4 + 3 4 = 7 6

x 1 = y 1 – B 1 3 = 7 6 + 11 6 = 3 x 2 = y 2 – B 1 3 = – 14 6 + 11 6 = – 1 2 x 3 = y 3 – B 1 3 = 7 6 + 11 6 = 3

Ответ: x 1 = – 1 2 , x 2 , 3 = 3

При решении кубических уравнений можно встретить сведение к решению уравнений 4 степени методом Феррари.

Таким образом, кубический многочлен a(x) всегда можно разложить на два множителя, один из которых линейный, а второй квадратичный

В свою очередь многочлен второй степени a3x 2 + bx + c может иметь 2 различных действительных корня, 1 действительный корень или 2 комплексно сопряженных корня.

Соответственно, получаем такие случаи разложения на множители a(x):

Таким образом, приравнивая каждый множитель в разложении к нулю, найдем все корни кубического уравнения в каждом случае. Рассмотрим решение кубических уравнений методом разложения на множители на примерах.

Читайте также:  Как называется программа распознавания музыки для андроид

Пример 1. Решить уравнение x 3 – 3x 2 – 4x + 6 = 0.

Делителями свободного члена являются числа: ±1, ±2, ±3, ±6. Значит, корни уравнения нужно искать среди них. Простой подстановкой убеждаемся, что корнем уравнения является число 1. Следовательно, исходное уравнение эквивалентно (x – 1)*(a3x 2 + bx + c) = 0.

Чтобы найти многочлен a3x 2 + bx + c, нужно левую часть исходного уравнения разделить на x – 1. Для деления многочлена на двучлен будем использовать схему Горнера.

Таким образом, x 3 – 3x 2 – 4x + 6 = (x – 1)(x 2 – 2x – 6). Следовательно, исходное уравнение эквивалентно (x – 1) (x 2 – 2x – 6) = 0.

Осталось решить квадратное уравнение x 2 – 2x – 6 = 0.

Калькуляторы для решение примеров и задач по математике

Лучшие математические приложения для школьников и их родителей, студентов и учителей. Подробнее .

Пример 2. Решить уравнение -2x 3 + 3x 2 – 4x – 9 = 0.

Делителями свободного члена являются числа: ±1, ±3, ±9. Делителями старшего коэффициента являются числа: ±1, ±2.

Значит, корни исходного уравнения могут быть среди чисел: ±1, ±3, ±9,

Снова простой подстановкой убеждаемся, что -1 является корнем уравнения. С помощью схемы Горнера делим левую часть исходного уравнения на x + 1.

Таким образом, -2x 3 + 3x 2 – 4x – 9 = (x + 1)(-2x 2 + 5x – 9). Следовательно, исходное уравнение эквивалентно (x + 1) (-2x 2 + 5x – 9)=0. Решая квадратное уравнение -2x 2 + 5x – 9 = 0, получаем, что его дискриминант 3 – x 2 – 8x + 4 = 0.

Делителями свободного члена являются числа: ±1, ±2, ±4. Делителями старшего коэффициента являются числа: ±1, ±2.

Значит, корни исходного уравнения могут быть среди чисел: ±1, ±2, ±4.

Простой подстановкой убеждаемся, что 2 является корнем уравнения. С помощью схемы Горнера делим левую часть исходного уравнения на x – 2.

Таким образом, 2x 3 – x 2 – 8x + 4 = (x – 2)(2x 2 + 3x – 2). Следовательно, исходное уравнение эквивалентно (x – 2) (2x 2 + 3x – 2) = 0. Решая квадратное уравнение 2x 2 + 3x – 2 = 0, получаем,

Еще один способ разложения на множители многочлена третьей степени – метод неопределенных коэффициентов. Он довольно громоздкий, но иногда бывает очень полезным при решении разного рода задач, а не только в случае разложения на множители. Разложение на множители любого многочлена третьей степени можно представить следующим образом a(x) = (x-x)*(a3x 2 + bx + c).

Раскрывая скобки, получим a(x) = a3x 3 + x 2 (b – a3x) + x*(c – bx) – cx.

Приравнивая теперь коэффициенты при одинаковых степенях x и свободные члены в исходном многочлене и в многочлене a(x), получим систему из четырех уравнений и четырех неизвестных a3,b,c и x. Рассмотрим применение метода неопределенных коэффициентов на примерах.

Пример 4. Решить уравнение x 3 + 2x 2 – 5x – 6 = 0.

Так как любой многочлен 3 степени можно представить в виде a3x 3 + x 2 (b – a3x) + x*(c – bx) – cx, то приравнивая коэффициенты при одинаковых степенях x, получаем следующую систему уравнений:

Выразим из первого уравнения x = b – 2 и подставим в два оставшихся. Получим

Теперь выразим переменную c из первого уравнения и подставим во второе.

Раскрывая скобки во втором уравнении и решая его, находим b:

Если b=4, то c=3, x = 2. Следовательно, x 3 + 2x 2 – 5x – 6 = (x – 2)(x 2 – 4x + 3)=(x – 2)(x + 1)(x + 3).

Если b = 1, то c = -6, x = -1. Следовательно, x 3 + 2x 2 – 5x – 6 = (x + 1)(x 2 + x – 6)=(x + 1)(x + 3)(x – 2).

Если b = -1, то c = -2, x = -3. Следовательно, x 3 + 2x 2 – 5x – 6=(x + 3)(x 2 – x – 2) = (x + 3)(x – 2)(x + 1).

Читайте также:  3145728 Байт сколько мегабайт

Таким образом, исходное уравнение эквивалентно уравнению (x + 3)(x – 2)(x + 1) = 0.

Приравнивая к нулю каждый из множителей, получаем корни уравнения x = -3, x = 2, x = -1.

Пример 5. Решить уравнение 2x 3 + x 2 – 5x + 2 = 0.

Приравнивая соответствующие коэффициенты при одинаковых степенях x, получаем следующую систему уравнений:

Выразим из первого уравнения x =

и подставим в два оставшихся. Получим

Теперь из первого уравнения выразим переменную c и подставим во второе.

Умножая левую и правую части второго уравнения на 4 и раскрывая скобки, находим b:

Если b = 3, то c = -2, x = 1. Следовательно, 2x 3 + x 2 – 5x + 2 = (x – 1)(2x 2 + 3x – 2)=2(x – 1)(x –

Если b = -3, то c = 1, x = -2. Следовательно, 2x 3 + x 2 – 5x + 2 = (x + 2)(2x 2 – 3x + 1) = 2(x + 2)(x –

Следовательно, исходное уравнение эквивалентно уравнению 2(x + 2)(x –

Приравнивая к нулю каждый из множителей, получаем корни уравнения x = -2, x =

Решения кубических уравнений с вещественными коэффициентами. Универсальные методы. Дискриминант кубического уравнения. Формула Виета для кубического уравнения.

Кубическим уравнением называется уравнение вида

  • ax 3 + bx 2 + cx +d = 0 , (1)
  • где a, b,c ,d – постоянные коэффициенты, а х – переменная.

Мы рассмотрим случай, когда коэффициенты являются веществеными числами.

Корни кубического уравнения. Нахождение корней (решение) кубического уравнения.

Число х называется корнем кубического уравнения (1), если при его подстановке уравнение (1) обращается в верное равенство.

Кубическое уравнение имеет не более трех корней (над комплексным полем всегда три корня, с учетом кратности) . И всегда имеет хотя бы 1 (вещественный) корень. Все возможные случаи состава корней легко определить с помощью знака дискриминанта кубического уравнения, т.е.:

Δ= -4b 3 d + b 2 c 2 – 4ac 3 + 18abcd – 27a 2 d 2 (Да, это дискриминант кубического уравнения)

Итак, возможны только 3 следующих случая:

  • Δ > 0 – тогда уравнение имеет 3 различных корня. (Для продвинутых – три различных вещественных корня)
  • Δ 3 + py + q = 0 (2)

К такому виду можно привести любое кубическое уравнение вида (1) с помощью следующей замены:

  • x= y – b/3a (3)
  • p= – b 2 /3a 2 + c/a
  • q= 2b 3 /27a 3 – bc/3a 2 + d/a

Итак, приступим к вычислению корней. Найдем следующие величины:

Дискриминант уравнения (2) в этом случае равен

Дискриминант исходного уравнения (1) будет иметь тот же знак , что и вышеуказанный дискриминант. Корни уравнения (2) выражаются следующим образом:

Соответственно, если Q>0, то уравнения (2) и (1) будут иметь лишь 1 (вещественный) корень, y1. Подставим его в (3) и найдем х для уравнения (1). (если вас интересуют также мнимые корни, то просто вычислите еще и y2, y3 и подставьте их в (3).

Если Q 3 + ax 2 + bx +c = 0 (4)

Очевидно, любое уравнение вида (1) можно привести к виду (4), просто поделив его на коэффициент а.

Итак, алгоритм применения этой формулы:

3. a) Если S>0, то вычисляем

И наше уравнение имеет 3 корня (вещественных):

Тогда единственный корень (вещественный): x1= -2sgn(R)*|Q| 1/2 *ch(φ) – a/3

Для тех, кого интересуют также и мнимые корни:

  • ch(x)=(e x +e -x )/2
  • Arch(x) = ln(x + (x 2 -1) 1/2 )
  • sh(x)=(e x -e -x )/2
  • sgn(x) – знак х

в) Если S=0,то уравнение имеет меньше трех различных решений:

Консультации и техническая
поддержка сайта: Zavarka Team