Как найти большую диагональ параллелограмма

Параллелограмм — это четырехугольник, у которого по определению противоположные стороны параллельны и равны. Как следствие, противоположные углы параллелограмма также будут между собой равны, а так как сумма всех углов в четырехугольнике равна 360 градусам, то можно сделать вывод, что сумма двух последовательных углов будет равна 180 градусам. Данное свойство будет играть существенную роль для нахождения диагоналей параллелограмма, с учетом того, что они разной длины.

Так как каждая диагональ параллелограмма делит его на два равновеликих треугольника, именно их свойства и будут использованы для выведения формулы диагонали параллелограмма.

В любом треугольнике угол и сторона, лежащие напротив, пропорциональны друг другу. Для параллелограмма это будет значить, что более длинная диагональ будет лежать напротив тупого угла, а более короткая диагональ — напротив острого.С учетом того, что стороны треугольников, полученных в результате проведения диагоналей, одинаковы — это стороны параллелограмма, значение градусной меры угла между данными сторонами определяет чему будет равна длина диагонали,вычисленной по формуле. Другими словами, если в формулудиагонали подставить значение острого угла параллелограмма, то калькулятор вычислит длину короткой диагонали, а если подставить значение тупого угла — то длинной.

Для того чтобы перейти от одного угла к другому, используется разность 180 градусов и заданного угла, таким образом калькулятор одновременно может вычислить обе диагонали.

Чтобы вывести формулу диагонали параллелограмма, используется теорема косинусов в треугольнике, который диагональ образует со сторонами. В любом из подобных треугольников, диагональ является стороной, противолежащей углу параллелограмма и, соответственно, ее квадрат равен сумме квадратов двух других сторон треугольника (сторон параллелограмма, в данном случае) за вычетом удвоенного произведения тех же сторон на косинус приведенного угла. Чтобы найти длину диагонали параллелограмма, калькулятор вычисляет квадратный корень из данного выражения.

Читайте также:  Что находится на рабочем столе компьютера

Свойства параллелограмма:

1. Противоположные стороны равны и параллельны

2. Противоположные углы равны

3. Точка пересечения диагоналей, делит их пополам

1. Длина диагонали параллелограмма через стороны, известную диагональ и угол.

a , b — стороны параллелограмма

D — большая диагональ

d — меньшая диагональ

α , β — углы параллелограмма

Формулы диагонали через стороны и углы параллелограмма (по теореме косинусов), ( D , d ):

Формулы диагонали через стороны и известную диагональ (по формуле- сумма квадратов диагоналей), ( D , d ):

2. Длина диагонали параллелограмма через площадь, известную диагональ и угол.

D — большая диагональ

d — меньшая диагональ

α , β — углы между диагоналями

S — площадь параллелограмма

Формулы диагонали через площадь, известную диагональ и угол между диагоналями, ( D , d ):

Нахождение диагоналей параллелограмма по двум сторонам и углу между ними.

Этот материал распространяется на условиях лицензии Creative Commons Attribution/Share-Alike License 3.0 (Unported). Это означает, что вы можете размещать этот контент на своем сайте или создавать на его основе собственный (в том числе и в коммерческих целях), при условии сохранения оригинального лицензионного соглашения. Кроме того, Вы должны отметить автора этой работы, путем размещения HTML ссылки на оригинал работы https://planetcalc.ru/1149/. Пожалуйста оставьте без изменения все ссылки на других авторов данной работы или работы, на основе которой создана данная работа (если таковые имеются в спроводительном тексте).

Размышляя на тему Расчет векторов приложения сил обнаружил, что надо рассчитывать диагонали параллелограмма, да и углы не помешало бы находить.

На помощь приходит известная теорема косинусов:

и подробный рисунок:

после чего все становится ясно как день.

Итак, сначала используем теорему косинусов, чтобы найти короткую диагональ d1. Затем, тонко подмечая, что второй угол в параллелограмме равен 180 градусам минус первый, используем теорему косинусов, чтобы найти длинную диагональ d2. Зная диагонали, используем всё ту же теорему косинусов для нахождения оставшихся углов. И наконец, зная все углы между диагоналями и сторонами, находим углы между самими диагоналями, используя тот факт, что сумма углов треугольника равна 180. Найдя оба угла, выбираем меньший, его и выводим, так как второй, очевидно, 180 градусов минус первый.
Калькулятор ниже.