Как выражать переменную из формулы по математике

  • 5 — 9 классы
  • Алгебра
  • 5 баллов

Объясните пожалуйста как из формулы выразить переменную?

  • Попроси больше объяснений
  • Следить
  • Отметить нарушение

Yarepkina 01.04.2013

Ответ

Проверено экспертом

выразить переменную — это сделать такие преобразования ,чтобы в итоге с одной стороны равенства стояла нужная переменная, а с другой — все остальное (только ни в коем случае, во второй части не должно быть нужной нам переменной)

например, дана формула:

если нам нужно выразить х, то:

если нам нужно выразить у, то:

соответственно, если нам нужно выразить z, то

В случаях, когда переменная в формуле представлена в разных местах, для нужного нам представления (в одной части переменная, а в другой — все остальное) потребуется сделать немало упрощений, найти корни уравнений, и т.д.

Например, дана формула:
х²-2ах+а²=0

надо выразить х

преобразуем формулу: х²-2ах+а² = (х-а)²=0

|х|=|а|, тут преобразование нас подводит к тому, что у нас есть две возможности выразить х и обе будут соответствовать первоначальной формуле:

в таких ситуациях учитывают обе возможности и решают дальше последовательно сначала один вариант, потом другой.

Идёт приём заявок

Подать заявку

Для учеников 1-11 классов и дошкольников

Описание презентации по отдельным слайдам:

Выразить переменную из формулы Дудников Ю. А. МБОУ Качалинская СОШ 2017

1. В той части формулы, где содержится переменная, которую нужно выразить, расставьте порядок действий. В одночленах и многочленах, не содержащих искомую величину, порядок действий не расставляем. 2. Найдите в выражении последнее действие, и перенести одночлен или многочлен, исполняющий это действие через знак равенства первым, но уже с противоположным действием. Таким образом, перенесите из одной части равенства в другую все известные величины. В заключение перепишите формулу так, чтобы неизвестная переменная стояла слева. Порядок выражения переменной

1 2 1 2 3 S a t 2 = 1 2 2 S a t 2 = 2 S a t 2 =

a = 1 1 2 1 0 — t υ υ 0 t a = + υ υ t a = + 0 υ υ t a — = 0 υ υ

1 2 1 2 3 1 1 2 b + S = a h h = + 2 ) ( a b ( ) h b a 2 S + = h a b 2 S — = h b a a b

1 2 1 1 a = υ υ 0 — t Заново расставляем порядок действий, так как нужная переменная оказалась в другой части формулы. t — t = υ 0 a υ

Читайте также:  Сколько стоит смартфон мегафон

1 2 1 2 3 1 1 2 υ + S = υ 0 t t = + 2 0 ) ( υ υ ( ) t 0 υ υ 2 S + = t 0 υ υ 2 S — = t 0 υ υ υ υ

1 2 1 ( ) c 0 t t к c 0 t t к c 0 t t к Q m + = c 0 t t к

3 1 2 1 2 1 υ υ 1 2 S 2 = 0 2 — a υ — 2 S a 2 = υ 2 0 2 S a 2 = + 2 0 υ υ 2 S a = 2 + 0 υ υ 2 2 S a = + 0 υ υ

1 3 2 2 3 3 g ℓ = T 2 π g ℓ = T 2 π 2 2 g ℓ = T 4 π 2 2 g ℓ T 4 π = g

3 2 1 1 4 3 2 1 1 2 ν h = + ν кр h m 2 2 υ ν h — = ν кр h m 2 2 υ 2 ν h — = ν кр h m 2 υ ( ) 2 ν h — = ν кр h m 2 υ ( ) ν h — = ν кр h m 2 υ ( ) ν h — = ν кр h m 2 υ ( )

1 = T T х — Т η н н = T T х — Т η н н — T T х = Т η н н — — T х = Т η н — ( 1 ) — 1 = T T х — н η 1 = T T х — н η

— k d = — C 2 d — k d = C 2 d ( ) — — k d = C 2 d — C + k d = C 2 d + C ( ) + k 1 = C 2 d + C + k 1 = C 2 d + C

1 1 1 2 1 2 2 + S = υ 0 t 3 t = + 2 0 ) ( υ υ υ ( ) t 0 υ υ 2 S + = t 0 υ υ 2 S — = t 0 υ υ υ υ

2 2 3 5 1 4 x a + t k + b = 1 x a — t k + b = 1 2 2 3 1 4 ( x a — t k + b = 1 2 2 3 1 ) 2 ( x a — t k + b = 1 2 ) 2 ) ( 1 ( x a — t k + b = 1 ) 2 ) ( (

1 2 1 4 3 1 3 2 2 4 1 3 2 1 1 S = ) + K 2 E m a x — b ( + K E m ) 2 a x — b ( = S + K E m 2 a x — b = S 2 a x + K E m + b = S m + K E + b = S S 2 a x + K E + b = S S m x a + K E + b = S S m

h + g R G = ) 2 M ( h + g R G = ) 2 M ( h + g R G = ) 2 M ( h + g R G = M h — g R G = M

1 1 2 Приведем к общему знаменателю левую часть формулы Если дроби равны, то обратные им дроби тоже равны. Перевернем дроби, для того чтобы неизвестная переменная оказалась в числителе. F 1 1 = + f 1 d F 1 1 = — f 1 d F d 1 = — f F d F d 1 = — f F d F d = — f F d

1 1 2 1 Приведем к общему знаменателю левую часть формулы Переворачиваем дробь. k 1 2 = + f 3 d k 1 2 = — f 3 d k d = — f k d 2 3 — k d 2 = f k d 3 1 k d 2 = — f k d 3 1

X A + = ( ) ω φ t s i n r c r c X A — = a ω t s i n r c ω 1

U U X β = 2 l o g 0 δ U U X β = 2 l o g 0 δ U U X β = 0 δ 2 U U X β = 0 δ 2

f 0 f 1 = — c υ ( f 0 f 1 = — c υ ) ( )

В каждой задаче по физике требуется из формулы выразить неизвестную, следующим шагом подставить численные значения и получить ответ, в некоторых случаях необходимо только выразить неизвестную величину. Способов выведения неизвестной из формулы много. Если посмотреть страницы Интернета, то мы увидим множество рекомендаций по этому поводу. Это говорит о том, что единого подхода к решению этой проблемы научное сообщество еще не выработало, а те способы, которые используются, как показывает опыт работы в школе – все они малоэффективны. До 90% учащихся выпускных классов не умеют правильно выразить неизвестное. Те же, кто умеют это делать – выполняют громоздкие преобразования. Очень странно, но физики, математики, химики имеют разные подходы, объясняя методы переноса параметров через знак равенства (предлагают правила треугольника, креста или пропорций др.) Можно сказать, что имеют разную культуру работы с формулами. Можно представить, что происходит с большинством учеников, которые встречается с разными трактовками решения данной проблемы, последовательно посещая уроки этих предметов. Эту ситуацию описывает типичный диалог в сети:

Читайте также:  Этапы работы над сайтом

Научите выражать из формул величины. 10 класс, мне стыдно не знать, как из одной формулы делать другую.

Да не переживай — это проблема многих моих одноклассников, хоть я и в 9 кл. Учителя показывают это чаще всего методом треугольника, но мне кажется, что это неудобно, да и запутаться легко. Покажу наиболее простой способ, которым я пользуюсь.

Допустим, дана формула:

Ну более простая. тебе из этой формулы нужно найти время. Ты берешь и в эту формулу подставляешь числа только разные, исходя из алгебры. Допустим:

и тебе наверное хорошо видно, что чтобы найти время в алгебраическом выражении 5 нужно 45/9 т.е переходим к физике: t=s/v

У большинства учащихся формируется психологический блок. Часто учащиеся отмечают, что при чтении учебника трудности в первую очередь вызывают те фрагменты текста, в которых много формул, что «длинные выводы все равно не понять», но при этом возникает чувство неполноценности, неверия в свои силы.

Я, предлагаю следующее решение данной проблемы – большинство учащихся все — таки могут решать примеры и, следовательно, расставлять порядок действий. Используем это их умение.

1. В той части формулы, где содержится переменная, которую нужно выразить, надо расставь порядок действий, причем в одночленах, не содержащих искомую величину этого делать не будем.

2. Затем в обратной последовательности вычислений перенесите элементы формулы в другую часть формулы ( через знак равенства) с противоположным действием ( « минус» — «плюс», «разделить» — « умножить», « возведение в квадрат» – «извлечение корня квадратного»).

То есть найдем в выражении последнее действие и перенесем одночлен или многочлен, исполняющий это действие, через знак равенства первым, но уже с противоположным действием. Таким образом, последовательно, находя последнее действие в выражении, перенесите из одной части равенства в другую все известные величины. В заключение перепишем формулу так, чтобы неизвестная переменная стояла слева.

Читайте также:  Как импортировать пароли в оперу

Получаем четкий алгоритм работы, точно знаем, сколько преобразований необходимо выполнить. Можем для тренировки использовать уже известные формулы, можем выдумывать свои. Для начала работы над усвоением данного алгоритма была создана презентация.

Опыт работы с учащимися показывает, что данный способ хорошо воспринимается ими. Реакция учителей на мое выступление на фестивале «Учитель профильной школы» также говорит о положительном зерне, заложенном в этой работе.

При решении систем линейных уравнений с многими переменными возникает частая необходимость выражения из уравнения той или иной переменной.

Как это делается? Возьмем для примера уравнение 2x+10y+3z=10. В нем наличествуют три переменных X, Y, Z. При помощи онлайнового калькулятора в зависимости от потребности выражения той или иной переменной уравнение 2x+10y+3z=10 преобразуется:
— через z в уравнение вида z = (-2x-10y+10)/(+3);
— через y в уравнение вида y = (-2x-3z+10)/(+10);
— через x в уравнение вида x= (-10y-3z+10)/(+2).

Полученное значение переменной X, Y или Z можно подставлять в следующее уравнение системы. В результате в нем будет на одну неизвестную переменную меньше. Выражение переменной из уравнений требуется при решении задач линейного программирования, направленных на выяснение значений показателей эффективности (целевой функции) в самых различных направлениях.

Решение систем линейных уравнений требуется для целей определения важных показателей сложных практических производственных и иных задач:
— загрузки оборудования,
— планирования производств,
— составления пищевого рациона откармливаемых животных,
— использования сырья и пр.

«>