Решение квадратных уравнений с комплексными корнями

Одна из причин введения комплексных чисел состояла в том, чтобы добиться разрешимости любого квадратного уравнения, в частности уравнения

Покажем, что расширив поле действительных чисел до поля комплексных чисел, мы получили поле, в котором каждое квадратное уравнение разрешимо, т.е. имеет решение. Так, уравнение x 2 = – 1 имеет два решения: x1 = i, x2 = – i.

Это нетрудно установить проверкой: i•i = i 2 = – 1, (– i)•(– i) = i 2 = – 1.

Перейдем теперь к вопросу о решении полного квадратного уравнения. Квадратным уравнением называют уравнение вида:

ax 2 + bx + c = 0 (a ¹ 0),

где x – неизвестная, a, b, c – действительные числа, соответственно первый, второй коэффициенты и свободный член, причем a ¹ 0. Решим это уравнение, выполнив над ним ряд несложных преобразований.

· Разделим все члены уравнения на a ¹ 0 и перенесем свободный член в правую часть уравнения:

  • К обеим частям уравнения прибавим выражение с тем, чтобы левая его часть представляла полный квадрат суммы двух слагаемых:
  • Извлечем корень квадратный из обеих частей уравнения:
  • Найдем значения неизвестной:

Теперь можно исследовать полученное решение. Оно зависит от значения подкоренного выражения, называемого дискриминантом квадратного уравнения. Если b 2 – 4ac > 0, то есть действительное число и квадратное уравнение имеет действительные корни. Если же – мнимое число, квадратное уравнение имеет мнимые корни.

Результаты исследования представлены ниже в таблице:

Итак, введение комплексных чисел позволяет разработать полную теорию квадратных уравнений. В поле комплексных чисел разрешимо любое квадратное уравнение.

1. Решите уравнение x 2 – 2x – 8 = 0.

Решение. Найдем дискриминант D = b 2 – 4ac = (– 2) 2 – 4•1•(– 8) = 36 > 0.

Уравнение имеет два действительных корня:

2. Решите уравнение x 2 + 6x + 9 = 0.

Решение. D = 6 2 – 4•1•9 = 0, уравнение имеет два равных действительных корня:

3. Решите уравнение x 2 – 4x + 5 = 0.

Решение. D = 16 – 4•1•5 = – 4

Геометрическая интерпретация комплексных чисел состоит в том, что каждому комплексному числу z = x + yi ставится в соответствие точка (x, y) координатной плоскости таким образом, что действительная часть комплексного числа представляет собой абсциссу, а коэффициент при мнимой части – ординату точки.

Таким образом, устанавливается взаимно однозначное соответствие между множеством комплексных чисел и множеством точек координатной плоскости. Подобным образом было установлено соответствие между множеством действительных чисел и множеством точек числовой прямой.

На рисунке 1 изображена координатная плоскость. Числу 2 + 3i соответствует точка A(2, 3) плоскости; числу 2 – 3i – точка B(2, – 3); числу – 2 + 3i – точка C(– 2, 3); числу – 2 – 3i – точка D(– 2; – 3). Числу 3i соответствует точка E(0, 3); а числу – 3i – точка F(0, – 3). Итак, каждому комплексному числу соответствует единственная точка координатной плоскости и, обратно, каждой точке координатной плоскости соответствует единственное комплексное число, при этом двум различным комплексным числам соответствуют две различные точки координатной плоскости. Ясно, что действительным числам x + 0i соответствуют точки оси абсцисс, а чисто мнимым числам 0 + yi, где y ¹ 0 – точки оси ординат. Поэтому ось Oy называют мнимой, а ось Ox – действительной. Сопряженным комплексным числам соответствуют точки, симметричные относительно оси абсцисс (рис. 2).

Читайте также:  Word первая буква заглавная

Тригонометрическая форма комплексного числа

Точка координатной плоскости, соответствующая комплексному числу z = x + yi, может быть указана по-другому: ее координатами могут быть расстояние r от начала координат и величина угла j между положительной полуосью Ox и лучом Oz (рис. 3).

Расстояние r от начала системы координат до точки, соответствующей комплексному числу z, называют модулем этого числа. Тогда по теореме Пифагора (рис. 2) имеем: r 2 = x 2 + y 2 = (x + yi)(x – yi) = z•z.

Отсюда найдем модуль комплексного числа как арифметическое (неотрицательное) значение корня:

Если комплексное число z изображается точкой оси абсцисс (т.е. является действительным числом), то его модуль совпадает с абсолютным значением. Все комплексные числа, имеющие модуль 1, изображаются точками единичной окружности – окружности с центром в начале системы координат, радиуса 1 (рис. 4).

Угол j между положительной полуосью Ox и лучом Oz называют аргументом комплексного числа z = x + yi (рис. 3).

Сопряженные комплексные числа имеют один и тот же модуль и аргументы, отличающиеся знаком: j = – j.

В отличие от модуля аргумент комплексного числа определяется неоднозначно. Аргумент одного и того же комплексного числа может иметь бесконечно много значений, отличающихся друг от друга на число, кратное 360°. Например, число z (рис. 3) имеет модуль r, аргумент же этого числа может принимать значения j; j + 360°; j + 720°; j + 1080°; … или значения j – 360°; j –720°; j – 1080°; … Данное значение модуля r и любое из приведенных выше значений аргумента определяют одну и ту же точку плоскости, соответствующую числу z.

Пусть точке с координатами (x; y) соответствует комплексное число z = x + yi. Запишем это комплексное число через его модуль и аргумент. Воспользуемся определением тригонометрических функций синуса и косинуса (рис. 3):

x = r cos j; y = r sin j.

Тогда число z выражается через модуль и аргумент следующим образом: z = x + yi = r(cos j + i sin j).

Выражение z = r(cos j + i sin j) называют тригонометрической формой комплексного числа, в отличии от выражения z = x + yi, называемого алгебраической формой комплексного числа.

Приведем примеры обращения комплексных чисел из алгебраической формы в тригонометрическую:

Читайте также:  Если человек увольняется после отпуска

Для числа i имеем r = 1, j = 90°, поэтому i = 1(cos 90° + i sin 90°);

Для числа – 1 имеем r = 1, j = 180°, поэтому – 1 = 1(cos 180° + i sin 180°);

Для числа 1 + i имеем поэтому

Для числа имеем r = 1, j = 45°, поэтому

Для числа имеем r = 2, j = 120°, поэтому

Справедливость приведенных равенств нетрудно проверить путем подстановки в их правой части числовых значений тригонометрических функций. Итак, для того, чтобы комплексное число, заданное в алгебраической форме, обратить в тригонометрическую форму, необходимо найти его модуль r и аргумент j, пользуясь формулами:

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Как то на паре, один преподаватель сказал, когда лекция заканчивалась — это был конец пары: "Что-то тут концом пахнет". 8516 — | 8103 — или читать все.

91.146.8.87 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Калькулятор на сайте "Контрольная работа Ру" позволяет решать уравнения с комплексными числами и переменными онлайн, в том числе квадратные уравнения с комплексными числами. Итак, пример-инструкция, как воспользоваться калькулятором: Надо решить комплексное уравнение:

, где i — комплексная единица, exp — это экспонента e .. для этого перейдите по ссылке решение уравнений онлайн и введите данное комплексное уравнение, также укажите, что i — это комплексная единица, а то ответа не получится. Получится как здесь Еще один пример с квадратным уравнением с комплексными числами: Надо решить квадратное уравнение

. Вы вводите его по ссылке решение уравнений онлайн , указываете, что i — это комплексная единица (после того как ввели уравнение и нажали кнопку "решить"), нажимаете кнопку под формой "Обновить" и получаете ответ как здесь. Если в ответе присутствуют корни из комплексных чисел, то можно воспользоваться калькулятором по упрощению комлексных чисел по ссылке

Опубликовано: Январь 23, 2013

© Контрольная работа РУ — примеры решения задач

Рассмотрим решение уравнений с комплексными корнями и коэффициентами.

Двучленным называется уравнение вида $x^ =A$.

Рассмотрим три случая:

Решить уравнение: $x^ <3>=8$.

Так как $A>0$, то $x_ =sqrt[<3>] <8>cdot left(cos frac<2kpi > <3>+icdot sin frac<2kpi > <3>
ight),, , , k=0. 2$.

При $k=0$ получаем $x_ <0>=sqrt[<3>] <8>cdot left(cos 0+icdot sin 0
ight)=sqrt[<3>] <8>=2$.

При $k=1$ получаем

[x_ <1>=sqrt[<3>] <8>cdot left(cos frac<2pi > <3>+icdot sin frac<2pi > <3>
ight)=sqrt[<3>] <8>cdot (-frac<1> <2>+frac <sqrt<3>> <2>cdot i)=2cdot (-frac<1> <2>+frac <sqrt<3>> <2>cdot i)=-1+sqrt <3>cdot i.]

При $k=2$ получаем

[x_ <2>=sqrt[<3>] <8>cdot left(cos frac<4pi > <3>+icdot sin frac<4pi > <3>
ight)=sqrt[<3>] <8>cdot (-frac<1> <2>-frac <sqrt<3>> <2>cdot i)=2cdot (-frac<1> <2>-frac <sqrt<3>> <2>cdot i)=-1-sqrt <3>cdot i.]

Читайте также:  Как проверить датчик холла на стиральной машине

Попробуй обратиться за помощью к преподавателям

Решить уравнение: $x^ <3>=1+i$.

Так как $A$ — комплексное число, то

Тригонометрическая форма записи некоторого комплексного числа имеет вид $z=r(cos varphi +icdot sin varphi )$.

По условию $a=1,b=1$.

Вычислим модуль исходного комплексного числа:

Вычислим аргумент исходного комплексного числа:

[varphi =arg z=arctgfrac<1> <1>=arctg1=frac<pi > <4>]

Подставим полученные значения и получим:

Уравнение перепишем в виде:

При $k=0$ получаем $x_ <0>=sqrt[<3>] <sqrt<2>> cdot left(cos frac<pi /4> <3>+icdot sin frac<pi /4> <3>
ight)=sqrt[<3>] <sqrt<2>> cdot left(cos frac<pi > <12>+icdot sin frac<pi > <12>
ight)=sqrt[<6>] <2>cdot left(cos frac<pi > <12>+icdot sin frac<pi > <12>
ight)$.

При $k=1$ получаем

При $k=2$ получаем

Задай вопрос специалистам и получи
ответ уже через 15 минут!

Квадратным называется уравнение вида $ax^ <2>+bx+c=0$, где коэффициенты $a,b,c$ в общем случае являются некоторыми комплексными числами.

Решение квадратного уравнения находится с помощью дискриминанта $D=b^ <2>-4ac$, при этом

В случае, когда дискриминант является отрицательным числом, корни данного уравнения являются комплексными числами.

Решить уравнение $x^ <2>+2x+5=0$ и изобразить корни на плоскости.

[D=2^ <2>-4cdot 1cdot 5=4-20=-16.]

Изображение корней уравнения на комплексной плоскости (так как корни комплексные) приведено на рис. 1.

В случае, когда уравнение имеет комплексные корни, они являются комплексно-сопряженными числами.

Комплексное число вида $overline=a-bi$ называется числом комплексно-сопряженным для $z=a+bi$.

Известно, что если $x_ <1,2>$ являются корнями квадратного уравнения $ax^ <2>+bx+c=0$, то данное уравнение можно переписать в виде $(x-x_ <1>)(x-x_ <2>)=0$. В общем случае $x_ <1,2>$ являются комплексными корнями.

Зная корни уравнения $x_ <1,2>=1pm 2i$, записать исходное уравнение.

Запишем уравнение следующим образом:

[x^ <2>-(1-2i)cdot x-xcdot (1+2i)+(1-2i)cdot (1+2i)=0] [x^ <2>-x+2icdot x-x-2icdot x+1-4i^ <2>=0] [x^ <2>-2x+1+4=0] [x^ <2>-2x+5=0]

Следовательно, $x^ <2>-2x+5=0$ — искомое уравнение.

Рассмотрим квадратное уравнение с комплексными коэффициентами.

Решить уравнение: $z^ <2>+(1-2i)cdot z-(1+i)=0$ и изобразить корни на плоскости.

Так как $D>0$, уравнение имеет два корня:

Изображение корней уравнения на комплексной плоскости (так как корни комплексные) приведено на рис. 2.

В случае, когда уравнение имеет комплексные коэффициенты, его корни не обязательно являются комплексно-сопряженными числами.

Так и не нашли ответ
на свой вопрос?

Просто напиши с чем тебе
нужна помощь