Решение неравенств в целых числах

Иногда приходится решать в целых числах не уравнения, а неравенства. Так, при решении уравнений первой степени с двумя неизвестными в натуральных числах мы нередко решали эти уравнения в целых числах, а затем для выделения решений в натуральных числах решали систему двух неравенств первой степени с одним

неизвестным в целых числах. Необходимость в этом возникает и при решении некоторых других уравнений в целых числах. Например, при решении в натуральных числах уравнения z — х + у — ху приходится решать в натуральных числах неравенство

х + у — ху > 0. Наконец, встречаются текстовые задачи, решение которых сводится к решению в целых (а чаще натуральных) числах неравенств или систем неравенств.

Решите в целых числах x,y и z неравенство

Соберем все члены неравенства в левой части: х 2 +у 2 + z 2 -ху — 3у — 2z + 3 2 + у 2 + z 2 -ху — 3у — 2z + 4 ? 0.

Полученное неравенство при целых х, у и z равносильно предыдущему. Теперь выделим в левой части квадраты сумм. Полезно предварительно умножить неравенство на 4.

Ясно, что сумма в левой части последнего неравенства отрицательной быть не

может, она может только равняться нулю. Тогда

Находим отсюда х, у и z: у = 2, х=1, z=l.

5. Решите в целых числах х и у систему неравенств

6. Решите систему неравенств в натуральных числах х и у.

7. Сколько решений в целых числах х и у имеет неравенство

8. Три одноклассника купили 13 пирожков, причем Костя купил в два раза меньше Толи, а Володя — больше Кости, но меньше Толи. Сколько пирожков купил каждый из них?

9. В гараже 40 автомобилей разных типов: грузовые, легковые и автобусы. Автобусов меньше, чем легковых машин, а легковых машин в 12 раз меньше, чем грузовых. Найдите число автомобилей каждого типа.

36 грузовых, 3 легковых, 1 автобус

10. На одинаковых грузовиках перевезли 10 560 кг груза. Легковых автомобилей было на 6 меньше, чем грузовиков, и они перевезли 560 кг груза. Сколько было легковых автомобилей, если каждый из них перевозил груза меньше, чем грузовик, более чем на 1 т и машины грузились равномерно?

11. В отчете о лыжных соревнованиях говорится, что процент участников, прошедших дистанцию до конца, заключен в пределах от 94,2 % до 94,4 % участников. (Некоторая неопределенность этих данных объясняется неясностью с выступлениями отдельных участников.) Каково наименьшее число участников соревнований?

12. Найдите два натуральных числа, если их произведение заключено между 200 и 240, а отношение — между 20 и 24. Укажите все решения.

(67, 3), (68, 3), (69, 3), (70, 3), (71, 3)

13. Сколько решений в целых числах имеет неравенство

14. Найдите два натуральных числа, если их произведение заключено между 120 и 130, а отношение — между 2 и 3. Укажите все решения.

15. Решите в целых числах х, у и z систему неравенств

Методы решения уравнений и неравенств в целых числах

Скачать:

Вложение Размер
oksana_11.pptx 1.67 МБ
Предварительный просмотр:

Подписи к слайдам:

7. Методы решения уравнений и неравенств в целых числах Выполнила: ученица 11 «А» класса Устименко О.Д. Учитель математики: Кукса Б.И. 2014г. МОУ — СОШ № 3 г. Можайск Презентация на тему:

7.1. Линейные уравнения Метод прямого перебора Использование неравенств Использование отношения делимости Метод «спуска» Использование формул 7.2. Нелинейные уравнения Метод разложения на множители Вынесение общих множителей за скобку Применение формул сокращенного умножения Использование параметра Метод решения относительно одной переменной выделение целой части Метод «спуска» метод конечного «спуска» Параметризация уравнения Функционально-графический метод 7.3. Неравенства Использование области определения Использование монотонности Использование ограниченности 7.4. Уравнения и неравенства Уравнение с одной неизвестной Показательные уравнения Неравенства Уравнения, содержащие функцию «целая часть числа» [ x ]

Пример 74. В клетке сидят кролики и фазаны. Всего у них 18 ног. Узнать сколь- ко в клетке тех и других. Укажите все решения. Решение. Пусть х – количество кроликов , у – количество фазанов, тогда имеем уравнение 4 x + 2y = 18 или 2x + y = 9 Если х =1, то у=7. Если х=2, то у=5. Если х = 3, то у = 3. Если х = 4, то у = 1. При х = 5 получаем 2 ∙ 5 = 10 > 9. Ответ: (1 ;7), (2;5), (3;3), (4;1). 7.1. Линейные уравнения Метод прямого перебора

Использование неравенств Пример 75. Решить в натуральных числах уравнение 5х + 8у = 39 Решение. Для уменьшения перебора вариантов рассмотрим неравенства 5х = 39 – 8у ≥ 0 8у = 39 – 5х ≥ 0 у ≤ 4 х ≤ 7 Проведем перебор по неизвестной у. Если у = 1, то х = 6,2 не является натуральным числом. Если у = 2, то х = 4,6 не является натуральным числом. Если у = 3, то х = 3. Если у = 4, то х = 1,4 не является натуральным числом. Ответ: (3; 3)

Использование отношения делимости Пример 76. Имеются контейнеры двух видов: по 130 кг и 160 кг. Сколько было контейнеров первого и сколько второго вида, если вместе они весят 3 тонны? Укажите все решения Решение. Обозначим количество контейнеров первого вида через х , второго – через у . Получаем уравнение 130х + 160у = 3000 или 13х + 16у = 300. Далее имеем : 13х + 13у + 3у = 13 ∙ 23 + 1, 3у — 1 = 13 ∙ (23 — х — у). Отсюда следует, что разность 3у — 1 делится на 13. Если 3у — 1 = 0, то у не является натуральным числом. Если 3у — 1 = 13, то у не является натуральным числом. Если 3у — 1 = 26, то у = 9 и х = 12. Если 3у — 1 = 39, то у не является натуральным числом. Если 3у — 1 = 52, то у не является натуральным числом. Если 3у — 1 = 65, то у = 22 но 16 ∙ 22 = 352 > 300. Ответ: 12 контейнеров по 130 кг и 9 по 160 кг.

Метод «спуска» Пример 79. Решить в целых числах уравнение 5х — 7у = 3. Решение. Выразим из уравнения то не- известное, коэффициент при котором меньше по модулю: Дробь должна быть равна целому числу. где z – целое число. Тогда 2у + 3 = 5 z . Из последнего уравнения выразим то неизвестное, коэффициент при котором меньше по модулю, и проделаем аналогичные преобразования: Дробь должна быть целым числом. Обозначим , г де t – целое число . Отсюда z = 2t — 3. Последовательно возвращаемся к неизвестным x и y . y = 3∙(2t — 3) — t = 5t — 9, x = y + z = 5t — 9 + 2t — 3 = 7t — 12. Ответ: x = 7t — 12, y = 5t — 9, где t Z . Положим ,

Использование формул Теорема. Уравнение a 1 x 1 + a 2 x 2 + … + a n x n = b разрешимо в целых числах тогда и только тогда, когда d │ b , где d = НОД ( a 1, a 2 ,…, a n ). Теорема. Пусть уравнение ax + by= c разрешимо в Z и пара ( x 0 ; y 0 ) является частным решением этого уравнения. Тогда множеством всех решений в Z данного уравнения является множество пар ( x; y ) , где Следствие. Пусть а и b взаимно просты и ( x 0 y 0 ) какое-нибудь решение уравнения ax + by = c (*) Тогда формулы x = x 0 — b ∙ t , y = y 0 + a ∙ t при t є Z дают все решения уравнения (*).

Пример 81. (МГУ, 1969). Остаток от деления некоторого натурального числа n на 6 равен 4, остаток от деления n на 15 равен 7. Чему равен остаток от деления n на 30? Решение. Из условия задачи следует, что существует натуральное число k такое, что n = 6k + 4. 2 k — 5l = 1. (*) Для решения этого уравнения найдем какое-нибудь частное решение в целых (не обязательно неотрицательных) числах. Подбором в качестве такого частного решения можно взять, например, k = -2 , l = -1 . Согласно следствия уравнение (*) имеет решения k = -2 +5t, l = -1 + 2t, где t є Z. Чтобы числа k и l были неотрицательными, параметр t должен принимать натуральные значения. Теперь имеем n = 6 ∙ (5t — 2) +4 = Ответ: 22. Аналогично имеем , n = 15l + 7, где l є N. Исключая из этих двух равенств n , получим уравнение 30t — 8 = 30(t — 1) + 22.

Читайте также:  Как настроить процессор на windows 10

Пример 83. Решить в целых числах уравнение 127 x — 52y + 1 = 0. Решение. Преобразуем отношение коэффициентов при неизвестных. Прежде всего, выделим целую часть неправильной дроби Правильную дробь заменим равной ей дробью Тогда получим Проделаем такие же преобразования с полученной в знаменателе неправильной дробью . Повторяя те же рассуждения для дроби , получим

Мы получили выражение, которое называется конечной цепной или непрерывной дробью. Отбросив последнее звено этой цепной дроби – одну пятую, превратим получающуюся при этом новую цепную дробь в простую и вычтем ее из исходной дроби Приведем полученное выражение к общему знаменателю и отбросим его 127 ∙ 9 — 52 ∙ 22 + 1 = 0. 127 x -52y + 1 = 0 x = 9, y = 22 x = 9 +52t , y = 22 + 127 t , где t є Z . Ответ: x = 9 +52t , y = 22 + 127 t , где t є Z .

7.2. Нелинейные уравнения Метод разложения на множители вынесение общих множителей за скобку Пример 84. Решить в целых числах уравнение 2 x 3 + xy — 7 = 0 . Решение. Приведем данное уравнение к виду x(2x 2 + y) = 7 Так как 7= 1 ∙ 7 = 7 ∙ 1 = -1 ∙ (-7) = -7 ∙ (-1), то рассмотрим четыре системы уравнений: Из каждой системы получаем решения. Ответ: (1; 5); (-1; -9); (7; -97); (-7; -99).

Применение формул сокращенного умножения Пример 85. Найти все пары натуральных чисел, разность квадратов которых равна 55. Решение. Запишем условие задачи в виде уравнения n 2 — k 2 = 55 или (n — k)(n + k) = 55. Так как n + k > 0 , то n — k > 0 , причем n + k > n — k. Поскольку 55 = 1 ∙ 55 = 5 ∙ 11 то возможны два случая Решая эти уравнения, получим два ответа: n = 28, k = 27 и n = 8, k = 3. Ответ: (28; 27); (8; 3).

Использование параметра Пример 88. Решить в целых числах уравнение 2 x 2 — 2yx + 9x + y = 2. Решение. Перепишем уравнение в виде 2 x 2 — x(2y — 9) + y — 2 + a = a и разложим левую часть уравнения на множители как квадратный трехчлен относительно х . Находим дискриминант D = 4y 2 — 44y + 97 — 8a. Очевидно, если , 97 — 8a = 121 , то дискриминант будет полным квадратом. При этом a = -3 и Отсюда x 1 = 0,5 и x 2 = y — 5 . Уравнение принимает вид (2x — 1)(x — y + 5) = -3 . Рассмотрите самостоятельно решение последнего уравнения. Ответ: (1; 9); (-1; 3); (2; 8); (0; 2).

Метод решения относительно одной переменной выделение целой части Пример 89. (МГУ, 1997). Найти все пары целых чисел x и у, удовлетворяющие уравнению 3xy + 14x + 17y + 71 = 0. Решение. Выразим из данного уравнения у через х: При этом следует отметить, что величина 3x + 17 ≠ 0 (так как x – целое число). Выделим из дроби в правой части этого равенства правильную алгебраическую дробь (у которой степень числителя меньше степени знаменателя): Умножим обе части последнего равенства на 3:

Метод «спуска» метод конечного «спуска» Пример 96. Решить в целых числах уравнение 2x 2 — 5y 2 = 7. Решение. Так как 2x 2 – четное число, а 7 – нечетное, то 5y 2 должно быть нечетным, т.е. у – нечетное. Пусть , y = 2z + 1, где z є Z , тогда данное уравнение можно переписать в виде x 2 — 10z 2 — 10z = 6. Отсюда видно, что x должно быть четным. Пусть , x = 2m , тогда последнее уравнение примет вид 2m 2 — 5z(z + 1) = 3 , что невозможно, так как число z(z + 1) – четно, а разность двух четных чисел не может быть равна нечетному числу. Таким образом, данное уравнение не имеет решений в целых числах. Ответ: нет решений.

Поскольку числа 3у и 14 – целые, то 3x +17 должно быть делителем числа 25 : 3x + 17 = ±1; ±5; ±25 – всего 6 возможностей. Отсюда для x получаем три возможных значения: –4, –6, –14 (в остальных трех случаях x не является целым). Соответствующие значения у равны –3, –13, –5. Ответ: (-4; -3); (-6; -13); (-14; -5). Замечание. В данном примере суть выделения целой части состоит в избавлении переменной x из числителя (сравните с примером 77). В решении был использован прием домножения обеих частей равенства на коэффициент при x в знамена- теле. Этот прием домножения также удобно использовать при решении уравнений методом разложения на множители.

Параметризация уравнения Пример 99. Решить в целых числах уравнение x 3 + y 3 + z 3 = 2 . Решение. Положим x = a + b, y = a — b. Так как x 3 + y 3 = 2a 3 + 6ab 2 , то исходное уравнение принимает вид 2a 3 + 6ab 2 + z 3 = 2. Положив a = 1, получим z 3 = -6b 2 . Считаем теперь b = 6t 2 Отсюда x = 1 + 6t 2 , y = 1 -6t 2 , z = -6t 2 . Таким образом, получено бесконечное множество решений исходного уравнения, соответствующих целочисленным значениям параметра t . Ответ: x = 1 + 6t 2 , y = 1 -6t 2 , z = -6t 2 , где t є Z

Функционально-графический метод Пример 100. (МИОО 2010). Найти все пары натуральных k и n таких, что k e . Ответ: k = 2 , n = 4 .

7.3. Неравенства Использование области определения Пример 102. (МГУ, 1973). Найти все целые числа x , удовлетворяющие неравенству Решение. Допустимые значения x определяются системой неравенств Подставляем последовательно найденные значения x в неравенство, предварительно его упростив.

1. x = 1. Тогда 2. х = 2. Тогда 3. х = 3. Тогда Ответ: 2; 3.

Использование монотонности Пример 103. (МГУ, 1976). Найти все целые z , удовлетворяющие неравенству Решение. Допустимые значения z определяются из системы Заметим, что левая часть неравенства увеличивается с ростом z , а правая – уменьшается. Это обстоятельство позволяет упростить перебор. В силу сделанного выше замечания, необходимости в проверке значений z = 3, 4, 5, 6 нет. Эти числа решениями не являются. Ответ: -1, 0, 1.

Использование ограниченности Пример 104. (МГУ, 1996). Найти все целочисленные решения неравенства Решение. Целые решения будем искать из двух ограничений системы Первое неравенство выполняется при x = 3, 4, 5, 6. Но из этих значений исходному неравенству удовлетворяет только x = 3 . При x = 0, 1, 2 первое неравенство не выполняется. При x = -1 выполняется как первое не- равенство, так и исходное неравенство. При x = -2 первое неравенство не выполняется. При остальных значениях x = -3, -4, . первое неравенство не разрешимо, так как левая часть неравенства x(x 2 — 5) ≥ 3 будет отрицательной. Ответ: -1; 3.

Метод интервалов Пример 105. (МГУ, 1972). Определить, сколько целочисленных решений имеет неравенство Решение. Методом интервалов по 2 n определяем решения (см. рис. 2): Дальше подбором находим n = ± 2, ± 3, ±4 или n = ±8, ±9,±10, ±11, ±12. Ответ: 16 решений.

7.4. Уравнения и неравенства Уравнение с одной неизвестной Пример 107. Может ли квадратное уравнение ax 2 + bx + c = 0 с целыми коэффициентами иметь дискриминант, равный 23? Первое решение. Рассмотрим уравнение b 2 — 4ac = 23. Так как 23 – нечетное число, а 4 ac – четное, то b 2 и, следовательно, b – нечетное число, т.е . b = 2k — 1, k є Z . Тогда (2k — 1) 2 — 4ac = 23; 4(k 2 — k -ac) = 22. Последнее уравнение не имеет решений, так как 22 не делится на 4. Второе решение. Перепишем уравнение b 2 — 4ac = 23 в виде b 2 — 25 = 4ac — 2 и разложим обе части уравнения на множители: (b — 5)(b + 5) = 2(2ac — 1). (*) Так как в правой части уравнения – число четное, то и в левой – тоже четное, следовательно, b — 5 и b + 5 одновременно четные (докажите), т.е. b — 5 =2m, b — 5 = 2k. Левая часть уравнения (*) делится на 4 , а правая – нет, поэтому уравнение b 2 -4ac = 23 не имеет решений в целых числах. Третье решение. Перепишем уравнение b 2 -4ac = 23 в виде b 2 = 4ac + 23 или b 2 = 4(ac + 5) + 3. Получили, что квадрат натурального числа при делении на 4 дает остаток 3 , что невозможно (докажите). Ответ: не может.

Показательные уравнения Теорема. Если остаток от деления a 1 на b равен r 1 , а остаток от деления a 2 на b равен r 2 , то остаток от деления a 1 +a 2 на b равен остатку от деления r 1 + r 2 на b . Опорная задача. Докажите, что оста- ток от деления на 3 числа 5 k равен 1 , если k четно, и 2 , если k нечетно.

Читайте также:  Motorola moto z камера

Неравенства Пример 121. (МИОО 2010). Найти все пары (x; y) целых чисел, удовлетворяющие системе неравенств : Решение. Выделяя полные квадраты, получаем: Из первого и второго неравенства системы: Подставляя x = 12 в систему, получаем: Ответ: (12; -8).

Уравнения, содержащие функцию «целая часть числа» [ x ] Целой частью числа x называется наибольшее целое число, не превосходящее х . Свойства целой части числа: 1) Из равенства [y] = n следует, что a) n – целое число; б) y = n + α , где 0 ≤ α < 1; в) 0 ≤ y — n < 1. 2) Если [ u ] = [ v ] то u = m + α , v = m+ β , где 0 ≤ α < 1 и 0 ≤ β <1 , поэтому u — v = α — β и -1 < u — v < 1. 3 ) Если [ x + y ] = x то x – целое число и 0 ≤ y < 1. 4) Если n – целое число, то [ n + x ] = n + [ x ].

Продолжаем разбирать способы решения неравенств, имеющих в составе одну переменную. Мы уже изучили линейные и квадратные неравенства, которые представляют из себя частные случаи рациональных неравенств. В этой статье мы уточним, неравенства какого типа относятся к рациональным, расскажем, на какие виды они делятся (целые и дробные). После этого покажем, как правильно их решать, приведем нужные алгоритмы и разберем конкретные задачи.

Понятие рациональных равенств

Когда в школе изучают тему решения неравенств, то сразу берут рациональные неравенства. На них приобретаются и оттачиваются навыки работы с этим видом выражений. Сформулируем определение данного понятия:

Рациональное неравенство представляет из себя такое неравенство с переменными, которое содержит в обоих частях рациональные выражения.

Отметим, что определение никак не затрагивает вопрос количества переменных, значит, их может быть сколь угодно много. Следовательно, возможны рациональные неравенства с 1 , 2 , 3 и более переменными. Чаще всего приходится иметь дело с выражениями, содержащими всего одну переменную, реже две, а неравенства с большим количеством переменных обычно в рамках школьного курса не рассматривают вовсе.

Таким образом, мы можем узнать рациональное неравенство, посмотрев на его запись. И с правой, и с левой стороны у него должны быть расположены рациональные выражения. Приведем примеры:

x > 4 x 3 + 2 · y ≤ 5 · ( y − 1 ) · ( x 2 + 1 ) 2 · x x — 1 ≥ 1 + 1 1 + 3 x + 3 · x 2

А вот неравенство вида 5 + x + 1 x · y · z не относится к рациональным, поскольку слева у него есть переменная под знаком корня.

Все рациональные неравенства делятся на целые и дробные.

Целое рациональное равенство состоит из целых рациональных выражений (в обеих частях).

Дробно рациональное равенство – это такое равенство, которое содержит дробное выражение в одной или обеих своих частях.

Например, неравенства вида 1 + x — 1 1 3 2 2 + 2 3 + 2 11 — 2 · 1 3 · x — 1 > 4 — x 4 и 1 — 2 3 5 — y > 1 x 2 — y 2 являются дробно рациональными, а 0 , 5 · x ≤ 3 · ( 2 − 5 · y ) и 1 : x + 3 > 0 – целыми.

Мы разобрали, что из себя представляют рациональные неравенства, и выделили их основные типы. Можем переходить дальше, к обзору способов их решения.

Как решать целые неравенства

Допустим, что нам требуется найти решения целого рационального неравенства r ( x ) s ( x ) , которое включает в себя только одну переменную x . При этом r ( x ) и s ( x ) представляют собой любые целые рациональные числа или выражения, а знак неравенства может отличаться. Чтобы решить это задание, нам нужно преобразовать его и получить равносильное равенство.

Начнем с перенесения выражения из правой части в левую. Получим следующее:

вида r ( x ) − s ( x ) 0 ( ≤ , > , ≥ )

Мы знаем, что r ( x ) − s ( x ) будет целым значением, а любое целое выражение допустимо преобразовать в многочлен. Преобразуем r ( x ) − s ( x ) в h ( x ) . Это выражение будет тождественно равным многочленом. Учитывая, что у r ( x ) − s ( x ) и h ( x ) область допустимых значений x одинакова, мы можем перейти к неравенствам h ( x ) 0 ( ≤ , > , ≥ ) , которое будет равносильно исходному.

Зачастую такого простого преобразования будет достаточно для решения неравенства, поскольку в итоге может получиться линейное или квадратное неравенство, значение которого вычислить несложно. Разберем такие задачи.

Условие: решите целое рациональное неравенство x · ( x + 3 ) + 2 · x ≤ ( x + 1 ) 2 + 1 .

Решение

Начнем с переноса выражения из правой части в левую с противоположным знаком.

x · ( x + 3 ) + 2 · x − ( x + 1 ) 2 − 1 ≤ 0

Теперь, когда мы выполнили все действия с многочленами слева, можно переходить к линейному неравенству 3 · x − 2 ≤ 0 , равносильному тому, что было дано в условии. Решить его несложно:

Ответ: x ≤ 2 3 .

Условие: найдите решение неравенства ( x 2 + 1 ) 2 − 3 · x 2 > ( x 2 − x ) · ( x 2 + x ) .

Решение

Переносим выражение из левой части в правую и выполняем дальнейшие преобразования с помощью формул сокращенного умножения.

( x 2 + 1 ) 2 − 3 · x 2 − ( x 2 − x ) · ( x 2 + x ) > 0 x 4 + 2 · x 2 + 1 − 3 · x 2 − x 4 + x 2 > 0 1 > 0

В итоге наших преобразований мы получили неравенство, которое будет верным при любых значениях x , следовательно, решением исходного неравенства может быть любое действительное число.

Ответ: любое действительно число.

Условие: решите неравенство x + 6 + 2 · x 3 − 2 · x · ( x 2 + x − 5 ) > 0 .

Решение

Из правой части мы ничего переносить не будем, поскольку там 0 . Начнем сразу с преобразования левой части в многочлен:

x + 6 + 2 · x 3 − 2 · x 3 − 2 · x 2 + 10 · x > 0 − 2 · x 2 + 11 · x + 6 > 0 .

Мы вывели квадратное неравенство, равносильное исходному, которое легко решить несколькими методами. Применим графический способ.

Начнем с вычисления корней квадратного трехчлена − 2 · x 2 + 11 · x + 6 :

D = 11 2 — 4 · ( — 2 ) · 6 = 169 x 1 = — 11 + 169 2 · — 2 , x 2 = — 11 — 169 2 · — 2 x 1 = — 0 , 5 , x 2 = 6

Теперь на схеме отметим все необходимые нули. Поскольку старший коэффициент меньше нуля, ветви параболы на графике будут смотреть вниз.

Нам будет нужна область параболы, расположенная над осью абсцисс, поскольку в неравенстве у нас стоит знак > . Нужный интервал равен ( − 0 , 5 , 6 ) , следовательно, эта область значений и будет нужным нам решением.

Ответ: ( − 0 , 5 , 6 ) .

Бывают и более сложные случаи, когда слева получается многочлен третьей или более высокой степени. Чтобы решить такое неравенство, рекомендуется использовать метод интервалов. Сначала мы вычисляем все корни многочлена h ( x ) , что чаще всего делается с помощью разложения многочлена на множители.

Условие: вычислите ( x 2 + 2 ) · ( x + 4 ) 14 − 9 · x .

Решение

Начнем, как всегда, с переноса выражения в левую часть, после чего нужно будет выполнить раскрытие скобок и приведение подобных слагаемых.

( x 2 + 2 ) · ( x + 4 ) − 14 + 9 · x 0 x 3 + 4 · x 2 + 2 · x + 8 − 14 + 9 · x 0 x 3 + 4 · x 2 + 11 · x − 6 0

В итоге преобразований у нас получилось равносильное исходному равенство, слева у которого стоит многочлен третьей степени. Применим метод интервалов для его решения.

Сначала вычисляем корни многочлена, для чего нам надо решить кубическое уравнение x 3 + 4 · x 2 + 11 · x − 6 = 0 . Имеет ли оно рациональные корни? Они могут быть лишь в числе делителей свободного члена, т.е. среди чисел ± 1 , ± 2 , ± 3 , ± 6 . Подставим их по очереди в исходное уравнение и выясним, что числа 1 , 2 и 3 будут его корнями.

Значит, многочлен x 3 + 4 · x 2 + 11 · x − 6 может быть описан в виде произведения ( x − 1 ) · ( x − 2 ) · ( x − 3 ) , и неравенство x 3 + 4 · x 2 + 11 · x − 6 0 может быть представлено как ( x − 1 ) · ( x − 2 ) · ( x − 3 ) 0 . С неравенством такого вида нам потом будет легче определить знаки на промежутках.

Далее выполняем оставшиеся шаги интервального метода: рисуем числовую прямую и точки на ней с координатами 1 , 2 , 3 . Они разбивают прямую на 4 промежутка, в которых нужно определить знаки. Заштрихуем промежутки с минусом, поскольку исходное неравенство имеет знак .

Нам осталось только записать готовый ответ: ( − ∞ , 1 ) ∪ ( 2 , 3 ) .

Ответ: ( − ∞ , 1 ) ∪ ( 2 , 3 ) .

В некоторых случаях выполнять переход от неравенства r ( x ) − s ( x ) 0 ( ≤ , > , ≥ ) к h ( x ) 0 ( ≤ , > , ≥ ) , где h ( x ) – многочлен в степени выше 2 , нецелесообразно. Это распространяется на те случаи, когда представить r ( x ) − s ( x ) как произведение линейных двучленов и квадратных трехчленов проще, чем разложить h ( x ) на отдельные множители. Разберем такую задачу.

Условие: найдите решение неравенства ( x 2 − 2 · x − 1 ) · ( x 2 − 19 ) ≥ 2 · x · ( x 2 − 2 · x − 1 ) .

Решение

Данное неравенство относится к целым. Если мы перенесем выражение из правой части влево, раскроем скобки и выполним приведение слагаемых, то получим x 4 − 4 · x 3 − 16 · x 2 + 40 · x + 19 ≥ 0 .

Читайте также:  Eax700 x td 128m a

Решить такое неравенство непросто, поскольку придется искать корни многочлена четвертой степени. Оно не имеет ни одного рационального корня (так, 1 , − 1 , 19 или − 19 не подходят), а искать другие корни сложно. Значит, воспользоваться этим способом мы не можем.

Но есть и другие способы решения. Если мы перенесем выражения из правой части исходного неравенства в левую, то сможем выполнить вынесение за скобки общего множителя x 2 − 2 · x − 1:

( x 2 − 2 · x − 1 ) · ( x 2 − 19 ) − 2 · x · ( x 2 − 2 · x − 1 ) ≥ 0 ( x 2 − 2 · x − 1 ) · ( x 2 − 2 · x − 19 ) ≥ 0 .

Мы получили неравенство, равносильное исходному, и его решение даст нам искомый ответ. Найдем нули выражения в левой части, для чего решим квадратные уравнения x 2 − 2 · x − 1 = 0 и x 2 − 2 · x − 19 = 0 . Их корни – 1 ± 2 , 1 ± 2 5 . Переходим к равенству x — 1 + 2 · x — 1 — 2 · x — 1 + 2 5 · x — 1 — 2 5 ≥ 0 , которое можно решить методом интервалов:

Согласно рисунку, ответом будет — ∞ , 1 — 2 5 ∪ 1 — 2 5 , 1 + 2 ∪ 1 + 2 5 , + ∞ .

Ответ: — ∞ , 1 — 2 5 ∪ 1 — 2 5 , 1 + 2 ∪ 1 + 2 5 , + ∞ .

Добавим, что иногда нет возможности найти все корни многочлена h ( x ) , следовательно, мы не можем представить его в виде произведения линейных двучленов и квадратных трехчленов. Тогда решить неравенство вида h ( x ) 0 ( ≤ , > , ≥ ) мы не можем, значит, решить исходное рациональное неравенство тоже нельзя.

Как решать дробно рациональные неравенства

Допустим, надо решить дробно рационально неравенств вида r ( x ) s ( x ) ( ≤ , > , ≥ ) , где r ( x ) и s ( x ) являются рациональными выражениями, x – переменной. Хотя бы одно из указанных выражений будет дробным. Алгоритм решения в этом случае будет таким:

  1. Определяем область допустимых значений переменной x .
  2. Переносим выражение из правой части неравенства налево, а получившееся выражение r ( x ) − s ( x ) представляем в виде дроби. При этом где p ( x ) и q ( x ) будут целыми выражениями, которые являются произведениями линейных двучленов, неразложимых квадратных трехчленов, а также степеней с натуральным показателем.
  3. Далее решаем полученное неравенство методом интервалов.
  4. Последним шагом является исключение точек, полученных в ходе решения, из области допустимых значений переменной x , которую мы определили в начале.

Это и есть алгоритм решения дробно рационального неравенства. Большая часть его понятна, небольшие пояснения требуются только для п. 2 . Мы перенесли выражение из правой части налево и получили r ( x ) − s ( x ) 0 ( ≤ , > , ≥ ) , а как потом привести его к виду p ( x ) q ( x ) 0 ( ≤ , > , ≥ ) ?

Сначала определим, всегда ли можно выполнить данное преобразование. Теоретически, такая возможность имеется всегда, поскольку в рациональную дробь можно преобразовать любое рациональное выражение. Здесь же у нас есть дробь с многочленами в числителе и знаменателе. Вспомним основную теорему алгебры и теорему Безу и определим, что любой многочлен n -ной степени, содержащий одну переменную, может быть преобразован в произведение линейных двучленов. Следовательно, в теории мы всегда можем преобразовать выражение таким образом.

На практике разложение многочленов на множители зачастую оказывается довольно трудной задачей, особенно если степень выше 4 . Если мы не сможем выполнить разложение, то не сможем и решить данное неравенство, однако в рамках школьного курса такие проблемы обычно не изучаются.

Далее нам надо решить, будет ли полученное неравенство p ( x ) q ( x ) 0 ( ≤ , > , ≥ ) равносильным по отношению к r ( x ) − s ( x ) 0 ( ≤ , > , ≥ ) и к исходному. Есть вероятность, что оно может оказаться и неравносильным.

Равносильность неравенства будет обеспечена тогда, когда область допустимых значений p ( x ) q ( x ) совпадет с областью значений выражения r ( x ) − s ( x ) . Тогда последний пункт инструкции по решению дробно рациональных неравенств выполнять не нужно.

Но область значений для p ( x ) q ( x ) может оказаться шире, чем у r ( x ) − s ( x ) , например, за счет сокращения дробей. Примером может быть переход от x · x — 1 3 x — 1 2 · x + 3 к x · x — 1 x + 3 . Либо это может происходить при приведении подобных слагаемых, например, здесь:

x + 5 x — 2 2 · x — x + 5 x — 2 2 · x + 1 x + 3 к 1 x + 3

Для таких случаев и добавлен последний шаг алгоритма. Выполнив его, вы избавитесь от посторонних значений переменной, которые возникают из-за расширения области допустимых значений. Возьмем несколько примеров, чтобы было более понятно, о чем идет речь.

Условие: найдите решения рационального равенства x x + 1 · x — 3 + 4 x — 3 2 ≥ — 3 · x x — 3 2 · x + 1 .

Решение

Действуем по алгоритму, указанному выше. Сначала определяем область допустимых значений. В данном случае она определяется системой неравенств x + 1 · x — 3 ≠ 0 x — 3 2 ≠ 0 x — 3 2 · ( x + 1 ) ≠ 0 , решением которой будет множество ( − ∞ , − 1 ) ∪ ( − 1 , 3 ) ∪ ( 3 , + ∞ ) .

Далее нам надо сделать так, чтобы в правой части неравенства получился 0 . Выполняем перенос выражения из правой части влево с противоположным знаком и получаем неравенство, равносильное исходному:

x x + 1 · x — 3 + 4 ( x — 3 ) 2 + 3 · x ( x — 3 ) 2 · ( x + 1 ) ≥ 0

После этого нам нужно преобразовать его так, чтобы было удобно применить метод интервалов. Первым делом приводим алгебраические дроби к наименьшему общему знаменателю ( x − 3 ) 2 · ( x + 1 ) :

x x + 1 · x — 3 + 4 ( x — 3 ) 2 + 3 · x ( x — 3 ) 2 · ( x + 1 ) = = x · x — 3 + 4 · x + 1 + 3 · x x — 3 2 · x + 1 = x 2 + 4 · x + 4 ( x — 3 ) 2 · ( x + 1 )

Сворачиваем выражение в числителе, применяя формулу квадрата суммы:

x 2 + 4 · x + 4 x — 3 2 · x + 1 = x + 2 2 x — 3 2 · x + 1

Областью допустимых значений получившегося выражения является ( − ∞ , − 1 ) ∪ ( − 1 , 3 ) ∪ ( 3 , + ∞ ) . Мы видим, что она аналогична той, что была определена для исходного равенства. Заключаем, что неравенство x + 2 2 x — 3 2 · x + 1 ≥ 0 является равносильным исходному, значит, последний шаг алгоритма нам не нужен.

Используем метод интервалов:

Видим решение < − 2 >∪ ( − 1 , 3 ) ∪ ( 3 , + ∞ ) , которое и будет решением исходного рационального неравенства x x + 1 · x — 3 + 4 x — 3 2 ≥ — 3 · x ( x — 3 ) 2 · ( x + 1 ) .

Ответ: < − 2 >∪ ( − 1 , 3 ) ∪ ( 3 , + ∞ ) .

Условие: вычислите решение x + 3 x — 1 — 3 x x + 2 + 2 x — 1 > 1 x + 1 + 2 · x + 2 x 2 — 1 .

Решение

Определяем область допустимых значений. В случае с этим неравенством она будет равна всем действительным числам, кроме − 2 , − 1 , 0 и 1 .

Переносим выражения из правой части в левую:

x + 3 x — 1 — 3 x x + 2 + 2 x — 1 — 1 x + 1 — 2 · x + 2 x 2 — 1 > 0

Далее выполняем преобразование левой части. Сначала преобразуем первую дробь:

x + 3 x — 1 — 3 x x + 2 = x + 3 — x — 3 x x + 2 = 0 x x + 2 = 0 x + 2 = 0

Учитывая получившийся результат, запишем:

x + 3 x — 1 — 3 x x + 2 + 2 x — 1 — 1 x + 1 — 2 · x + 2 x 2 — 1 = = 0 + 2 x — 1 — 1 x + 1 — 2 · x + 2 x 2 — 1 = = 2 x — 1 — 1 x + 1 — 2 · x + 2 x 2 — 1 = = 2 x — 1 — 1 x + 1 — 2 · x + 2 ( x + 1 ) · x — 1 = = — x — 1 ( x + 1 ) · x — 1 = — x + 1 ( x + 1 ) · x — 1 = — 1 x — 1

Для выражения — 1 x — 1 областью допустимых значений будет множество всех действительных чисел, за исключением единицы. Мы видим, что область значений расширилась: в нее были добавлены − 2 , − 1 и . Значит, нам нужно выполнить последний шаг алгоритма.

Поскольку мы пришли к неравенству — 1 x — 1 > 0 , можем записать равносильное ему 1 x — 1 0 . С помощью метода интервалов вычислим решение и получим ( − ∞ , 1 ) .

Исключаем точки, которые не входят в область допустимых значений исходного равенства. Нам надо исключить из ( − ∞ , 1 ) числа − 2 , − 1 и 0 . Таким образом, решением рационального неравенства x + 3 x — 1 — 3 x x + 2 + 2 x — 1 > 1 x + 1 + 2 · x + 2 x 2 — 1 будут значения ( − ∞ , − 2 ) ∪ ( − 2 , − 1 ) ∪ ( − 1 , 0 ) ∪ ( 0 , 1 ) .

Ответ: ( − ∞ , − 2 ) ∪ ( − 2 , − 1 ) ∪ ( − 1 , 0 ) ∪ ( 0 , 1 ) .

В заключение приведем еще один пример задачи, в котором окончательный ответ зависит от области допустимых значений.

Условие: найдите решение неравенства 5 + 3 x 2 x 3 + 1 x 2 — x + 1 — x 2 — 1 x — 1 ≥ 0 .

Решение

Область допустимых значений неравенства, заданного в условии, определяет система x 2 ≠ 0 x 2 — x + 1 ≠ 0 x — 1 ≠ 0 x 3 + 1 x 2 — x + 1 — x 2 — 1 x — 1 ≠ 0 .

Решений у этой системы нет, поскольку

x 3 + 1 x 2 — x + 1 — x 2 — 1 x — 1 = = ( x + 1 ) · x 2 — x + 1 x 2 — x + 1 — ( x — 1 ) · x + 1 x — 1 = = x + 1 — ( x + 1 ) = 0

Значит, исходное равенство 5 + 3 x 2 x 3 + 1 x 2 — x + 1 — x 2 — 1 x — 1 ≥ 0 не имеет решения, поскольку нет таких значений переменной, при которой оно имело бы смысл.