Сила в момент времени

Моме?нт и?мпульса (кинетический момент, угловой момент, орбитальный момент, момент количества движения) характеризует количество вращательного движения. Величина, зависящая от того, сколько массы вращается, как она распределена относительно оси вращения и с какой скоростью происходит вращение.

Момент импульса материальной точки относительно точки O определяется векторным произведением
, где — радиус-вектор, проведенный из точки O, — импульс материальной точки.
Момент импульса материальной точки относительно неподвижной оси равен проекции на эту ось вектора момента импульса, определенного относительно произвольной точки O данной оси. Значение момента импульса не зависит от положения точки O на оси z.

Момент импульса твердого тела относительно оси есть сумма моментов импульса отдельных частиц, из которых состоит тело относительно оси. Учитывая, что , получим
.

Если сумма моментов сил, действующих на тело, вращающееся вокруг неподвижной оси, равна нулю, то момент импульса сохраняется (закон сохранения момента импульса):
.

Производная момента импульса твердого тела по времени равна сумме моментов всех сил, действующих на тело:
.

Закон сохранения момента импульса: момент импульса замкнутой системы тел относительно любой неподвижной точки не изменяется с течением времени.
Это один из фундаментальных законов природы.

Аналогично для замкнутой системы тел, вращающихся вокруг оси z:

отсюда или .

Если момент внешних сил относительно неподвижной оси вращения тождественно равен нулю, то момент импульса относительно этой оси не изменяется в процессе движения.
Момент импульса и для незамкнутых систем постоянен, если результирующий момент внешних сил, приложенных к системе, равен нулю.

Закон сохранения момента импульса вытекает из основного уравнения динамики вращательного движения тела, закрепленного в неподвижной точке (уравнение 4.8), и состоит в следующем:

– если результирующий момент внешних сил относительно неподвижной точки тождественно равен нулю, то момент импульса тела относительно этой точки с течением времени не изменяется.

Действительно, если M = 0, то dL / dt = 0 , откуда

(4.14)

Другими словами, момент импульса замкнутой системы с течением времени не изменяется.
Из основного закона динамики тела, вращающегося вокруг неподвижной оси z (уравнение 4.13), следует закон сохранения момента импульса тела относительно оси:

– если момент внешних сил относительно неподвижной оси вращения тела тождественно равен нулю, то момент импульса тела относительно этой оси не изменяется в процессе движения, т.е. если Mz = 0, то dLz / dt = 0, откуда

(4.15)

Закон сохранения момента импульса является фундаментальным законом природы. Справедливость этого закона обусловливается свойством симметрии пространства – его изотропностью, т.е. с инвариантностью физических законов относительно выбора направления осей координат системы отсчета.

Изменение импульса материальной точки вызывается действием на нее силы.

Умножая уравнение (1.7) слева векторно на радиус-вектор , Получаем

(1.8)

Где вектор называется Моментом импульса материальной точки, а вектор — Моментом силы. Изменение момента импульса материальной точки вызывается моментом действующей на нее силы.

Несколько тел, каждое из которых можно рассматривать как материальную точку, составляют Систему материальных точек. Для каждой материальной точки можно записать уравнение вто­рого закона Ньютона

(1.13)

В уравнении (1.13) индексы дают номер материальной точки. Действующие на материальную точку силы разделены на внеш­ние и внутренние . Внешние силы — это силы, действующие со стороны тел, не входящих в систему материальных точек. Вну­тренние силы — это силы, действующие на материальную точку со стороны других тел, составляющих систему материальных точек. Здесь — сила, действующая на материальную точку, индекс которой , со стороны материальной точки с номером .

Из уравнений (1.13) вытекают несколько важных законов. Если просуммируем их по всем материальным точкам системы, то по­лучим

(1.14) ,

Величина (1.15)

Называется Импульсом системы материальных точек. Импульс системы материальных точек равен сумме импульсов отдельных материальных точек. В уравнении (1.14) двойная сумма для вну­тренних сил обращается в нуль. Для каждой пары материальных точек в нее входят силы, которые по третьему закону Ньютона равны и противоположно направлены. Для каждой пары вектор­ная сумма этих сил обращается в нуль. Поэтому равна нулю и сумма для всех сил.

В результате получим:

(1.16)

Уравнение (1.16) выражает закон изменения импульса системы материальных точек. Изменение импульса системы материальных точек вызывается только внешними силами. Если на систему не действуют внешние силы, то импульс системы материальных то­чек сохраняется. Систему материальных точек, на которую не действуют внешние силы, называют Изолированной, или замкну­той, системой материальных точек.

Аналогичным образом для каждой материальной точки запи­сываются уравнения (1.8) моментов импульсов

(1.17)

При суммировании уравнений (1.17) по всем материальным точ­кам системы материальных точек сумма моментов внутренних сил обращается в нуль и получается Закон изменения момента импуль­са системы материальных точек:

(1.18)

Где введены обозначения: — момент импульса системы мате­риальных точек, — момент внешних сил. Изменение момен­та импульса системы материальных точек вызывается внешними силами, действующими на систему. Для замкнутой системы мате­риальных точек момент импульса сохраняется

.

Вектор, равный векторному произведению радиус-вектора на силу,
называется моментом силы .

Читайте также:  Как проверить проброс портов на роутере

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Как то на паре, один преподаватель сказал, когда лекция заканчивалась – это был конец пары: "Что-то тут концом пахнет". 8516 – | 8103 – или читать все.

91.146.8.87 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

В статье мы расскажем про момент силы относительно точки и оси, определения, рисунки и графики, какая единица измерения момента силы, работа и сила во вращательном движении, а также примеры и задачи.

Момент силы представляет собой вектор физической величины, равный произведению векторов плеча силы (радиус-вектор частицы) и силы, действующей на точку. Силовой рычаг представляет собой вектор, соединяющий точку, через которую проходит ось вращения твердого тела с точкой, к которой приложена сила.

где: r — плечо силы, F — сила приложенная на тело.

Направление вектора силы момента всегда перпендикулярно плоскости, определяемой векторами r и F.

Главный момент — любая система сил на плоскости относительно принятого полюса называется алгебраическим моментом момента всех сил этой системы относительно этого полюса.

Во вращательных движениях важны не только сами физические величины, но и то, как они расположены относительно оси вращения, то есть их моменты. Мы уже знаем, что во вращательном движении важна не только масса, но и момент инерции. В случае силы, ее эффективность для запуска ускорения определяется способом приложения этой силы к оси вращения.

Взаимосвязь между силой и способом ее применения описывает МОМЕНТ СИЛЫ. Момент силы — это векторное произведение силового плеча R на вектор силы F:

Читайте также:  Как написать волну на клавиатуре

Как в каждом векторном произведении, так и здесь

Следовательно, сила не будет влиять на вращение, когда угол между векторами силы F и рычагом R равен 0 o или 180 o . Каков эффект применения момента силы М?

Мы используем второй Закон движения Ньютона и связь между канатом и угловой скоростью v = Rω в скалярной форме, действительны, когда векторы R и ω перпендикулярны друг другу

Умножив обе части уравнения на R, получим

Поскольку mR 2 = I, мы заключаем, что

Вышеуказанная зависимость справедлива и для случая материального тела. Обратите внимание, что в то время как внешняя сила дает линейное ускорение a, момент внешней силы дает угловое ускорение ε.

Единица измерения момента силы

Основной мерой измерения момента силы в системной координате СИ является: [M]=Н•м

Работа и сила во вращательном движении

Работа в линейном движении определяется общим выражением,

но во вращательном движении,

Исходя из свойств смешанного произведения трех векторов, можно записать

Поэтому мы получили выражение для работы во вращательном движении:

Мощность во вращательном движении:

Момент силы пример и решение задач относительно точки

Найдите момент силы, действующей на тело в ситуациях, показанных на рисунках ниже. Предположим, что r = 1m и F = 2N.

а) поскольку угол между векторами r и F равен 90°, то sin(a)=1:

M = r • F = 1м • 2N = 2Н • м

б) потому что угол между векторами r и F равен 0°, поэтому sin(a)=0:

M = 0
да направленная сила не может дать точке вращательное движение.

c) поскольку угол между векторами r и F равен 30°, то sin(a)=0.5:

M = 0,5 r • F = 1Н • м.

Таким образом, направленная сила вызовет вращение тела, однако ее эффект будет меньше, чем в случае a).

Момент силы относительно оси

Предположим, что данные являются точкой O (полюс) и мощность P. В точке O мы принимаем начало прямоугольной системы координат. Момент силы Р по отношению к полюсным O представляет собой вектор М из (Р), (рисунок ниже).

Любая точка A на линии P имеет координаты (xo , yo , zo ).
Вектор силы P имеет координаты Px , Py, Pz. Комбинируя точку A (xo, yo, zo ) с началом системы, мы получаем вектор p. Координаты вектора силы P относительно полюса O обозначены символами Mx, My, Mz. Эти координаты могут быть вычислены как минимумы данного определителя, где ( i, j, k) — единичные векторы на осях координат (варианты): i, j, k

После решения определителя координаты момента будут равны:

Читайте также:  Memory dumps что это

Координаты вектора моментов Mo (P) называются моментами силы относительно соответствующей оси. Например, момент силы P относительно оси Oz окружает шаблон:

Mz = Pyxo — Pxyo

Этот паттерн интерпретируется геометрически так, как показано на рисунке ниже.

На основании этой интерпретации момент силы относительно оси Oz можно определить, как момент проекции силы P на перпендикуляр оси Oz относительно точки проникновения этой плоскости осью. Проекция силы P на перпендикуляр оси обозначена Pxy, а точка проникновения плоскости Oxy — осью символом O.
Из приведенного выше определения момента силы относительно оси следует, что момент силы относительно оси равен нулю, когда сила и ось равны, в одной плоскости (когда сила параллельна оси или когда сила пересекает ось).
Используя формулы на Mx, My, Mz, мы можем рассчитать значение момента силы P относительно точки O и определить углы, содержащиеся между вектором M и осями системы:

Если сила лежит в плоскости Oxy, то zo = 0 и Pz = 0 (см. Рисунок ниже).

Момент силы P по отношению к точке (полюсу) O составляет:
Mx = 0,
My = 0,
Mo (P) = Mz = Pyxo — Pxyo.

Метка крутящего момента:
плюс (+) — вращение силы вокруг оси O по часовой стрелке,
минус (-) — вращение силы вокруг оси O против часовой стрелки.

Тимеркаев Борис — 68-летний доктор физико-математических наук, профессор из России. Он является заведующим кафедрой общей физики в Казанском национальном исследовательском техническом университете имени А. Н. ТУПОЛЕВА — КАИ

Помогите решить, погибаю.

Шар массой m=10 см, радиус которой равен R=20 см, вращается вокруг оси, которая проходит через его центр. Уравнение вращения шара имеет вид $$ varphi = A+B t^ <2>+Ct$$ где $$B=4 рад/ с^ <2>, С=-1 рад/ с^<3>$$. Найти закон изменения момента сил, которые действуют на шар. Найти момент силы в момент времени t=2c.

задан 16 Май ’13 17:19

2 ответа

Основное уравнение движения для вращающегося твердого тела (аналог 2 закона Ньютона для материальной точки): $$I cdot frac>

=vec$$ или для проекций на ось вращения $$I cdot frac
=M$$. Учитывая, что $%omega=frac
=2Bt+C$%, а момент инерции шара $%I=frac<2><5>mr^2$%, получаем $$M=frac<4><5>mr^2B$$. Момент сил в данном случае не зависит от времени.

отвечен 19 Май ’13 3:10

То есть, если момент инерции не зависит от времени, то найти эту зависимость невозможно?

Почему невозможно? Постоянная функция – это тоже функция. Это и есть искомая зависимость.

Все, сделал, огромное спасибо за помощь.

С каких это пор единицей измерения массы служит сантиметр?
Момент силы можно вычислить по формуле $$M=Idfrac

=Idfrac, $$ где $%I$% — момент инерции, который для шара равен $$I=dfrac<2><5>mr^2.$$

отвечен 16 Май ’13 23:42

Здравствуйте

Физика – это совместно редактируемый форум вопросов и ответов по естественным наукам для физиков, химиков, астрономов и биологов.