Средний коэффициент эластичности в excel

По десяти кредитным учреждениям получены данные, характеризующие зависимость объема прибыли (Y, млн.руб.) от величины доходов по кредитам (X1, млн.руб.), доходов по депозитам (X2, млн.руб.) и размера внутрибанковских расходов (X3, млн.руб.).

Y
X1
X2
X3

1. Осуществить выбор факторных признаков для построения многофакторной регрессионной модели.

2. Рассчитать параметры регрессионной модели. Оценить ее качество.

3. Для характеристики модели определить:

4. средние коэффициенты эластичности;

7. Оценить с помощью t-критерия Стьюдента статистическую значимость коэффициентов уравнения множественной регрессии.

8. Построить регрессионную модель со статистически значимыми факторами. Оценить ее качество.

9. Определить точечный и интервальный прогноз результативного показателя.

I. Выбор факторных признаков для построения модели осуществляется с помощью матрицы коэффициентов парной корреляции. Для её построения необходимо:

выбрать Сервис->Анализ данных->Корреляция

заполнить необходимые поля диалогового меню (рисунок 1)

Рис.1. Ввод параметров инструмента «Корреляция»

Результаты представлены на рисунке 2.

Рис.2. Таблица коэффициентов парных корреляций

Для выявления явления мультиколлинеарности необходимо проанализировать коэффициенты парной корреляции между факторными признаками. Если имеют место коэффициенты, значение которых по модулю больше 0,8, то, следовательно, мультиколлинеарность присутствует, и это явление необходимо устранять. Если же значения коэффициентов парной корреляции между факторными признаками, взятые по модулю, меньше величины 0,8, то явление мультиколлинеарности отсутствует, и, следовательно, все факторные признаки можно включать в модель множественной регрессии.

Так как , т.е. между факторными признаками X1 и X3 существует явление мультиколлинеарности, то для построения модели выбираем тот факторный признак, который оказывает большее влияние на результативный признак (фактор, для которого коэффициент парной корреляции с результативным признаком, взятый по модулю, является большим).

Следовательно, фактор X3 оказывает большее влияние на результативный признак (Y) и этот фактор рекомендуется в модели оставить. Фактор X1 оказывает меньшее влияние на результативный признак (Y) и этот фактор рекомендуется из модели исключить.

Таким образом, для построения модели множественной регрессии выбираются два факторных признака – Х2 (величина доходов по депозитам) и Х3 (величина внутрибанковских расходов).

II. Расчет параметров регрессионной модели можно осуществить с помощью инструмента анализа данных Регрессия, отличие заключается в том, что в качестве диапазона значений фактора X необходимо указать диапазон значений факторов X2 и X3 (рисунок 3).

Рис.3. Ввод параметров регрессии

Результаты построение множественной регрессии представлены на рисунке 4.

Рис.4. Вывод итогов регрессии

На основании полученных данных можно записать уравнение множественной регрессии

Y=-16,2872 + 0,197247*X2 + 0,592429*X3

Оценим качество построенной модели множественной регрессии по следующим направлениям:

Коэффициент детерминации = 0.794176 достаточно близок к 1, следовательно, качество модели можно признать высоким.

Критерий Фишера F = 13,50486 > Fтабл = 4,74 , следовательно, уравнение регрессии признается статистически значимым и может быть использовано для анализа и прогнозирования экономических процессов.

Для вычисления Fтабл необходимо определить:

– степень свободы числителя m=2 (число факторных признаков);

– степень свободы знаменателя n-m-1=10-2-1=7;

– уровень значимости =0,05.

III. Оценим качество построенной модели множественной регрессии с помощью коэффициентов эластичности, b – и D – коэффициентов.

Коэффициент эластичности определяется:

, (1)

где – среднее значение соответствующего факторного признака,

– среднее значение результативного признака.

bi – коэффициенты регрессии соответствующих факторных признаков.

ß-коэффициент определяется по следующей формуле:

, (2)

где – среднеквадратическое отклонение (СКО) соответствующего факторного признака (рассчитывается как корень квадратный из дисперсии признака),

– СКО результативного признака.

∆-коэффициент определяется по следующей формуле:

, (3)

где – коэффициент парной корреляции результативного и соответствующего факторного признаков,

– коэффициент детерминации.

На рисунке 5 представлены формулы расчетов описанных выше коэффициентов

Рис.5. Формулы расчетов коэффициентов

Результаты вычислений представлены в таблице 2.

Результаты расчета бета-, дельта- и коэффициентов эластичности

Y X2 X3
Ср.знач 47,8 59,4 88,4
Эласт. 0,245 0,881
Дисп 134,6 67,6 247,8
СКО 11,60 8,221 15,74
bi 0,197 0,592
0,139 0,803
0,599 0,883
0,105 0,894

Частный коэффициент эластичности показывает, на сколько процентов изменится среднее значение результативного признака, если среднее значение конкретного факторного признака изменится на 1 %, т.е., при увеличении на 1% величины доходов по депозитным операциям (Х2) прибыль банка увеличится на 0,245 % (Э2 = 0,245), при увеличении на 1% размера внутрибанковских расходов (X3) объём прибыли увеличится на 0,88% (Э3 =0,881).

β-коэффициент показывает, на какую величину изменится СКО результативного признака, если СКО конкретного факторного признака изменится на 1 единицу, т.е. при увеличении на 1 единицу СКО доходов по депозитам (X2), СКО объёма прибыли увеличится на 0,14 ( =0,139774); при увеличении на 1 единицу СКО внутрибанковских расходов СКО прибыли организации увеличится на 0,804 единицы ( = 0,803801 ).

Читайте также:  Как заблокировать сообщения в контакте от человека

∆-коэффициент показывает удельный вес влияния конкретного факторного признака в совместном влиянии всех факторных признаков на результативный показатель, т.е. удельный вес влияния внутрибанковских расходов (X3) на объём прибыли (результативный признак) составляет 89,4% (∆3 = 0,8944), а удельное влияние доходов по депозитам (Х2) на прибыль составляет 10,5 % ( ∆2 = 0,1055).

IV. Для оценки статистической значимости факторных признаков модели множественной регрессии используется t-критерий Стьюдента.

С помощью функции СТЬЮДРАСПОБР(0,05;7) определим табличное значение t табл = 2,364624.

Сравним расчетные значения t-статистики, взятые по модулю, с табличным значением этого критерия (расчетные значения берутся из столбца t-статистика таблицы 3 регрессионного анализа).

Результаты регрессионного анализа

Коэффициенты Стандартная ошибка t-статистика P-Значение Нижние 95% Верхние 95% Нижние 95,0% Верхние 95,0%
Y-пересечение -16,2872 14,93 -1,0904 0,311 -51,60 19,03 -51,60 19,03
X2 0,197 0,295 0,66857 0,525 -0,500 0,894 -0,500 0,894
X3 0,592 0,154 3,84478 0,006 0,228 0,956 0,228 0,956

t х2 = 0,668573 tтаб=2,364624, следовательно, фактор Х3 признается статистически значимым и информативным. Такой фактор рекомендуется в модели регрессии оставить.

Построим регрессионную модель со статистически значимыми факторами. Для конкретного примера статистически значимым фактором является только фактор Х3 (величина внутрибанковских расходов). Подробное построение регрессионных моделей рассмотрено ранее. Осуществим следующие установки в окне Регрессия (рисунок 6).

Рис.6. Диалоговое окно Регрессия

Получим следующие результаты (рисунок 7)

ВЫВОД ИТОГОВ
Регрессионная статистика
Множественный R 0,88376
R-квадрат 0,78103
Нормированный R-квадрат 0,75366
Стандартная ошибка 5,75868
Наблюдения
Дисперсионный анализ
df SS MS F Знач. F
Регрессия 946,300 946,300 28,53 0,000693
Остаток 265,299 33,1624
Итого 1211,6
Коэфф. Стандар ошибка t-статист. P-Знач. Нижние 95% Верхние 95% Нижние 95,0% Верхние 95,0%
Y-пересечение -9,78049 10,93189 -0,894 0,397 -34,9895 15,42 -34,9895 15,4285
X3 0,65136 0,12193 5,34184 0,000693 0,370178 0,9325 0,370178 0,932548

Рис.7. Вывод итогов регрессии

Запишем уравнение зависимости прибыли организации от величины внутрибанковских расходов (Х3):

Y = 0,651363*Х3 – 9,78049

Качество этой модели может быть оценено по коэффициенту детерминации =0,781, следовательно, размер прибыли кредитных организаций на 78,1 % зависит от величины внутрибанковских расходов.

При сравнении качества регрессии y = f (X3) с качеством регрессии
y = f (X2, X3) , имеющей =0,794, можно утверждать, что улучшение качества модели не произошло.

Значение F-критерия Фишера составляет 28,53 > Fтабл (1,8)=5,32 , следовательно, построенное уравнение регрессии признается статистически значимым и может быть использовано для анализа и прогнозирования процессов.

Построение точечного прогноза прибыли кредитного учреждения (результативного показателя) может быть осуществлено по уравнению множественной регрессии, построенной в пункте 4 задачи, или по уравнению регрессии, содержащего только статистически значимые факторы (пункт 5 задачи).

Воспользуемся уравнением множественной регрессии, так как качество этой модели признано лучшим:

Для построения точечного прогноза результативного признака необходимо рассчитать точечные прогнозы факторных признаков (величины доходов организации по депозитам и величины внутрибанковских расходов). Для этого построим графики X2(t), X3(t) и тренд по каждому из факторов (рисунок 8, 9).

Рис. 8. Выбор типа диаграммы

Рис.9. Выбор источника данных

На полученной диаграмме необходимо добавить линию тренда:

Диаграмма->Добавить линию тренда.

В настройках тренда в закладке Параметры указать (рисунок 10):

Прогноз вперед на 1 единицу

Показать уравнение на диаграмме

Поместить на диаграмму величину достоверности аппроксимации.

Рис.10. Параметры линии тренда

Результат построения представлен на рисунке 11.

Рис.11. Построение прогноза величины доходов по депозитам (X2)

В полученное уравнение тренда

Х2 = 1,8061*х + 49,467 ,

в котором в качестве факторного признака выступает «время», необходимо подставить следующий момент времени. Так как временной ряд факторного признака Х2 представлен 10 наблюдениями, то следующий момент времени будет представлен числом 11.

X2Прогн.=1,8061*11+49,467 = 69,3341 (млн.руб.)

Осуществляя аналогичные установки для фактора Х3, построим прогноз по величине внутрибанковских расходов (рисунок 12) .

Рис.12. Построение прогноза величины внутрибанковских расходов (X3)

Определим прогнозное значение внутрибанковских расходов из построенного уравнения тренда:

X3Прогн.=4,9455 *11+61,2=115,6005 (млн.руб.)

Рассчитанные значения прогнозов по факторам Х2 и Х3 подставим в уравнение множественной регрессии:

Читайте также:  Что подарить когда нет денег

Y=0,197247*X2 + 0,592429*X3 – 16,2872

YПрогн. = 0,197247*X2 Прогн. + 0,592429*X3 прогн. – 16,2872

Определим интервальный прогноз результирующего показателя, для этого рассчитаем ширину доверительного интервала по формуле:

(4)

где = 5,968678 (стандартная ошибка из таблицы регрессионной статистики, рисунок 17),

Y Прогн. – рассчитанное выше значение точечного прогноза результативного признака,

Кр= tтаб= 2,364624 табличный коэффициент Стьюдента, можно определить с помощью функции СТЬЮДРАСПОБР(0,05;7)

– среднее значение результативного признака (прибыли кредитной организации).

Подставляя эти значения в выше записанную формулу, получим:

U(k)= 5,968678*2,364624*√(1+0,1+326,6634/1211,6)= 16,51731

Таким образом, прогнозное значение прибыли кредитных организаций
Yпрогн= 65,873832 , будет находиться между верхней границей, равной
65,873832 + 16,51731 = 82,39113827 (млн.руб.)

и нижней границей, равной

65,873832 – 16,51731= 49,3565254 (млн.руб.)

Вывод: Прогнозное значение прибыли исследуемых кредитных организаций, рассчитанное по уравнению множественной регрессии, будет находиться в интервале от 49,36 мл.руб. до 82,39 млн.руб.

Данное уравнение регрессии признано статистически значимым по критерию Фишера и обладает достаточно высоким качеством, следовательно, результаты расчетов можно признать надежными и достоверными.


где dy/dx=y’ – производная функции.

Эластичность функции показывает приближенно, на сколько процентов изменяется функция y=f(x) при изменении независимой переменной x на 1%.
Различают обобщающие (средние) и точечные коэффициенты эластичности.
Обобщающий коэффициент эластичности рассчитывается для среднего значения : и показывает, на сколько процентов изменится у относительно своего среднего уровня при росте х на 1 % относительно своего среднего уровня.
Точечный коэффициент эластичности рассчитывается для конкретного значения х = х: и показывает, на сколько процентов изменится у относительно уровня у(х) при увеличении х на 1% от уровня х.
В зависимости от вида зависимости между х и у формулы расчета коэффициентов эластичности будут меняться. Основные формулы приведены в таблице.

Вид функции y = f(x) Точечный коэффициент эластичности Средний коэффициент эластичности
Линейная y = b + b1x
Парабола y= a + bx + cx 2
Равносторонняя гипербола y = a + b/x
Степенная y=ax b Э(x) = b Э(x) = b
Показательная y=ab x Э(x)=x ln(b)

Только для степенных функций y=a·x b коэффициент эластичности представляет собой постоянную независящую от х величину (равную в данном случае параметру b ). Именно поэтому степенные функции широко используются в эконометрических исследованиях. Параметр b в таких функциях имеет четкую экономическую интерпретацию – он показывает процентное изменение результата при увеличении фактора на 1% . Так, если зависимость спроса у от цен p характеризуется уравнением вида: y=200p -1,5 , то, следовательно, с увеличением цен на 1% спрос снижается в среднем на 1,5% .
Несмотря на широкое использование в эконометрике коэффициентов эластичности, возможны случаи, когда их расчет экономического смысла не имеет. Это происходит тогда, когда для рассматриваемых признаков бессмысленно определение изменения значений в процентах. Например, бессмысленно определять, на сколько процентов изменится заработная плата с ростом возраста рабочего на 1% . В такой ситуации степенная функция, даже если она оказывается наилучшей по формальным соображениям (исходя из наибольшего значения R 2 ), не может быть экономически интерпретирована.

Расчет коэффициента эластичности для линейной функции производят через калькулятор Линейная парная регрессия (см. для нелинейной функции).

Регрессионный и корреляционный анализ – статистические методы исследования. Это наиболее распространенные способы показать зависимость какого-либо параметра от одной или нескольких независимых переменных.

Ниже на конкретных практических примерах рассмотрим эти два очень популярные в среде экономистов анализа. А также приведем пример получения результатов при их объединении.

Регрессионный анализ в Excel

Показывает влияние одних значений (самостоятельных, независимых) на зависимую переменную. К примеру, как зависит количество экономически активного населения от числа предприятий, величины заработной платы и др. параметров. Или: как влияют иностранные инвестиции, цены на энергоресурсы и др. на уровень ВВП.

Результат анализа позволяет выделять приоритеты. И основываясь на главных факторах, прогнозировать, планировать развитие приоритетных направлений, принимать управленческие решения.

  • линейной (у = а + bx);
  • параболической (y = a + bx + cx 2 );
  • экспоненциальной (y = a * exp(bx));
  • степенной (y = a*x^b);
  • гиперболической (y = b/x + a);
  • логарифмической (y = b * 1n(x) + a);
  • показательной (y = a * b^x).

Рассмотрим на примере построение регрессионной модели в Excel и интерпретацию результатов. Возьмем линейный тип регрессии.

Задача. На 6 предприятиях была проанализирована среднемесячная заработная плата и количество уволившихся сотрудников. Необходимо определить зависимость числа уволившихся сотрудников от средней зарплаты.

Модель линейной регрессии имеет следующий вид:

Читайте также:  Как вставить стикер в ватсапе

Где а – коэффициенты регрессии, х – влияющие переменные, к – число факторов.

В нашем примере в качестве У выступает показатель уволившихся работников. Влияющий фактор – заработная плата (х).

В Excel существуют встроенные функции, с помощью которых можно рассчитать параметры модели линейной регрессии. Но быстрее это сделает надстройка «Пакет анализа».

Активируем мощный аналитический инструмент:

  1. Нажимаем кнопку «Офис» и переходим на вкладку «Параметры Excel». «Надстройки».
  2. Внизу, под выпадающим списком, в поле «Управление» будет надпись «Надстройки Excel» (если ее нет, нажмите на флажок справа и выберите). И кнопка «Перейти». Жмем.
  3. Открывается список доступных надстроек. Выбираем «Пакет анализа» и нажимаем ОК.

После активации надстройка будет доступна на вкладке «Данные».

Теперь займемся непосредственно регрессионным анализом.

  1. Открываем меню инструмента «Анализ данных». Выбираем «Регрессия».
  2. Откроется меню для выбора входных значений и параметров вывода (где отобразить результат). В полях для исходных данных указываем диапазон описываемого параметра (У) и влияющего на него фактора (Х). Остальное можно и не заполнять.
  3. После нажатия ОК, программа отобразит расчеты на новом листе (можно выбрать интервал для отображения на текущем листе или назначить вывод в новую книгу).

В первую очередь обращаем внимание на R-квадрат и коэффициенты.

R-квадрат – коэффициент детерминации. В нашем примере – 0,755, или 75,5%. Это означает, что расчетные параметры модели на 75,5% объясняют зависимость между изучаемыми параметрами. Чем выше коэффициент детерминации, тем качественнее модель. Хорошо – выше 0,8. Плохо – меньше 0,5 (такой анализ вряд ли можно считать резонным). В нашем примере – «неплохо».

Коэффициент 64,1428 показывает, каким будет Y, если все переменные в рассматриваемой модели будут равны 0. То есть на значение анализируемого параметра влияют и другие факторы, не описанные в модели.

Коэффициент -0,16285 показывает весомость переменной Х на Y. То есть среднемесячная заработная плата в пределах данной модели влияет на количество уволившихся с весом -0,16285 (это небольшая степень влияния). Знак «-» указывает на отрицательное влияние: чем больше зарплата, тем меньше уволившихся. Что справедливо.

Корреляционный анализ в Excel

Корреляционный анализ помогает установить, есть ли между показателями в одной или двух выборках связь. Например, между временем работы станка и стоимостью ремонта, ценой техники и продолжительностью эксплуатации, ростом и весом детей и т.д.

Если связь имеется, то влечет ли увеличение одного параметра повышение (положительная корреляция) либо уменьшение (отрицательная) другого. Корреляционный анализ помогает аналитику определиться, можно ли по величине одного показателя предсказать возможное значение другого.

Коэффициент корреляции обозначается r. Варьируется в пределах от +1 до -1. Классификация корреляционных связей для разных сфер будет отличаться. При значении коэффициента 0 линейной зависимости между выборками не существует.

Рассмотрим, как с помощью средств Excel найти коэффициент корреляции.

Для нахождения парных коэффициентов применяется функция КОРРЕЛ.

Задача: Определить, есть ли взаимосвязь между временем работы токарного станка и стоимостью его обслуживания.

Ставим курсор в любую ячейку и нажимаем кнопку fx.

  1. В категории «Статистические» выбираем функцию КОРРЕЛ.
  2. Аргумент «Массив 1» – первый диапазон значений – время работы станка: А2:А14.
  3. Аргумент «Массив 2» – второй диапазон значений – стоимость ремонта: В2:В14. Жмем ОК.

Чтобы определить тип связи, нужно посмотреть абсолютное число коэффициента (для каждой сферы деятельности есть своя шкала).

Для корреляционного анализа нескольких параметров (более 2) удобнее применять «Анализ данных» (надстройка «Пакет анализа»). В списке нужно выбрать корреляцию и обозначить массив. Все.

Полученные коэффициенты отобразятся в корреляционной матрице. Наподобие такой:

Корреляционно-регрессионный анализ

На практике эти две методики часто применяются вместе.

  1. Строим корреляционное поле: «Вставка» – «Диаграмма» – «Точечная диаграмма» (дает сравнивать пары). Диапазон значений – все числовые данные таблицы.
  2. Щелкаем левой кнопкой мыши по любой точке на диаграмме. Потом правой. В открывшемся меню выбираем «Добавить линию тренда».
  3. Назначаем параметры для линии. Тип – «Линейная». Внизу – «Показать уравнение на диаграмме».
  4. Жмем «Закрыть».

Теперь стали видны и данные регрессионного анализа.