Связь между нормальным и тангенциальным ускорением

Движение тела характеризуется скоростью и ускорением, которые могут изменяться во времени. Пусть материальная точка движется по плоской криволинейной траектории с переменной по величине и направлению скоростью (рис. 4). Для характеристики степени криволинейности вводится понятие радиуса кривизны в данной точке траектории.

Радиусом кривизны R траектории называют радиус окружности, которая сливается с криволинейной траекторией на бесконечно малом ее участке.

В данной точке траектории касательная всегда перпендикулярна радиусу кривизны.

Пусть и скорость, и ускорение меняются по величине и направлению.

Мы знаем, что ускорение тела при движении есть .

Вектор скорости можно представить как произведение модуля скорости и некоторого единичного вектора , сонаправленного с вектором линейной скорости , направленного по касательной к траектории.

Таким образом, полное ускорение материальной точки при криволинейном движении можно представить в виде суммы двух слагаемых. Первое слагаемое .

Вектор направлен по касательной к траектории и называется тангенциальным или касательным ускорением. Его модуль равен , поэтому характеризует быстроту изменения скорости криволинейного движения только по величине, так как вектор не изменяется.

Следовательно, можно заключить, что – тангенциальное ускорение, характеризует изменение скорости по величине и направлено по касательной к траектории.

Второе слагаемое называется нормальным ускорением.

Так как вектор сонаправлен с вектором , который определяет изменение направления вектора линейной скорости, то он характеризует изменение скорости криволинейного движения по направлению.

.

перпендикулярно скорости, направлено вдоль радиуса кривизны траектории к центру окружности.

Полное ускорение материальной точки при криволинейном движении характеризует быстроту изменения скорости как по величине, так и по направлению (рис.6).

, .

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Как то на паре, один преподаватель сказал, когда лекция заканчивалась – это был конец пары: "Что-то тут концом пахнет". 8516 – | 8103 – или читать все.

91.146.8.87 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Читайте также:  Самый лучший кинотеатр в москве

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Тангенциальным (касательным) ускорением называют ту составляющую вектора ускорения, которая направлена по касательной к траектории в данной точке траектории движения. Тангенциальное ускорение описывает степень изменения скорости по модулю при совершении криволинейного движения.

Если тело движется по криволинейной траектории, то его скорость направлена по касательной к этой траектории.

Так как направление скорости все время меняется, значит, в таком случае криволинейное движение всегда происходит с ускорением, также, если модуль скорости не меняется.

В большинстве случаев ускорение направлено под некоторым углом к скорости. Составляющую ускорения, которая направлена вдоль скорости, называют тангенциальным ускорением . Тангенциальное ускорение описывает степень изменения скорости по модулю:

Нормальное ускорение – это составляющая ускорения, которая направлена к центру кривизны траектории, то есть она является нормалью (направлена перпендикулярно) к скорости. Нормальное ускорение описывает степень изменения скорости по направлению:

Здесь R – это радиус кривизны траектории в заданной точке.

Тангенциальное и нормальное ускорение всегда имеют перпендикулярное направление, откуда получаем модуль полного ускорения:

.

Этот видеоурок доступен по абонементу

У вас уже есть абонемент? Войти

Ускорение. Нормальная и тангенциальная составляющие ускорения

Механическое движение по характеру подразделяется на поступательное, вращательное и колебательное; по виду траектории – прямолинейное и криволинейное. Также механическое движение можно подразделять по характеру изменения скорости.

Физическая величина, которая определяет быстроту изменения скорости, называется ускорением. Математически ускорение определяется отношением изменения скорости к промежутку времени, за которое оно произошло (производная от скорости по времени): – нормальная составляющая ускорения (см. рис. 1).

Рис. 1. Тангенциальная и нормальная составляющие полного ускорения

Тангенциальная составляющая ускорения характеризует быстроту изменения величины (модуля) скорости. Тангенциальное ускорение всегда коллинеарно скорости.

1) Если тангенциальная составляющая ускорения сонаправлена со скоростью, то движение будет ускоренное (см. рис. 2).

Читайте также:  Ati radeon 2100 rs740

Рис. 2. Тангенциальная составляющая ускорения сонаправлена со скоростью

2) Если тангенциальная составляющая ускорения противонаправлена скорости, то движение будет замедленным (см. рис. 3).

Рис. 3. Тангенциальная составляющая ускорения противонаправлена скорости

Нормальная составляющая ускорения характеризует быстроту изменения скорости по направлению. Нормальное ускорение всегда перпендикулярно скорости и направлено к центру по радиусу траектории, по которой движется тело (см. рис. 4).

Рис. 4. Направление нормального ускорения

Величина нормального ускорения связана с радиусом траектории и со скоростью движения следующим соотношением:

При прямолинейном движении тело имеет только тангенциальное ускорение. Нормальное ускорение отсутствует, так как скорость тела по направлению остаётся неизменной (см. рис. 5).

Рис. 5. Прямолинейное движение

При криволинейном движении, как правило, тело имеет тангенциальную и нормальную составляющую ускорения (см. рис. 6).

Рис. 6. Криволинейное движение

Пример нахождения тангенциальной и нормальной составляющей ускорения

Рассмотрим движение тела, брошенного под углом к горизонту (см. рис. 7). Найдём составляющие ускорения в тот момент, когда скорость тела направлена под углом к горизонту.

Рис. 7. Траектория движения тела

Касательная к траектории в точке A – это направление скорости

Рис. 8. Проекции ускорения

На рисунке видно, что тангенциальная составляющая ускорения направлена против скорости, то есть скорость тела в данный момент уменьшается (см. рис. 8). Нормальная составляющая ускорения направлена перпендикулярно скорости, следовательно, скорость в следующий момент наклонится в сторону .

Величины составляющих ускорения находим геометрически.

Рис. 9. Геометрическое определение величины составляющих ускорения

Угол A в треугольнике разложения на составляющие (треугольник выделен жёлтым на рисунке) имеет взаимно перпендикулярные стороны с углом .

Нормальная составляющая ускорения равна: .

Задача 1

Обод радиусом 1 метр катится по горизонтальной поверхности со скоростью 10 м/с. Найти радиус траектории точки поверхности обода при прохождении наивысшего положения.

Дано: .

Решение

Рис. 10. Иллюстрация к задаче

На рисунке изображён обод, который катится по горизонтальной поверхности со скоростью .

Скорости точек в верхней части обода равны: . Эта скорость будет направлена по горизонтали в сторону движения обода.

С центром обода у всех точек, лежащих на её поверхности, связано нормальное ускорение, так как оно направлено перпендикулярно скорости движения точки по окружности в любой момент времени.

Читайте также:  Чай в рожковой кофеварке

Ускорение остаётся неизменным для всех точек поверхности обода, так как при переходе к системе отсчёта, связанной с Землёй, центр обода движется равномерно: .

Тогда для точки

В этой задаче заданное значение начальной скорости было лишним. Избыточные данные часто включают в задания ЕГЭ по физике.

Ответ: .

Задача 2

После удара футбольный мяч за 2 с пролетел 40 м и упал на землю. Чему равен радиус траектории мяча в верхней точке траектории?

Дано: .

Решение

Рис. 11. Иллюстрация к задаче

На рисунке изображена траектория полёта мяча (см. рис. 11). Точка A – верхняя точка траектории, скорость мяча в которой .

Следовательно, радиус траектории в верхней точке равен: .

Ответ: .

Нахождение закона изменения скорости от времени

Сведения об ускорении необходимы для того, чтобы найти закон изменения скорости от времени. Например, зависимость скорости от времени находится как неопределённый интеграл от ускорения по времени: , где C – постоянная интегрирования.

При равноускоренном движении .

Домашнее задание

  1. Вопросы в конце параграфа 13 (стр. 46); – Касьянов В.А. Физика. 10 кл. (см. список рекомендованной литературы) (Источник)
  2. Камень брошен со скоростью 20 м/c под углом