Таблица истинности тройное равно

Инструкция . При вводе с клавиатуры используйте следующие обозначения:

Клавиша Оператор
! ¬ Отрицание (НЕ)
| | Штрих Шеффера (И-НЕ)
# Стрелка Пирса (ИЛИ-НЕ)
* & Конъюнкция (И)
+ v Дизъюнкция (ИЛИ)
^ Исключающее ИЛИ, сумма по модулю 2 (XOR)
@ Импликация (ЕСЛИ-ТО)
% Обратная импликация
= ≡ (

, ↔)

Эквивалентность (РАВНО)

bc необходимо ввести так: a*b*c+a*b=c+a=b*c
Для ввода данных в виде логической схемы используйте этот сервис.

Правила ввода логической функции

  1. Вместо символа v (дизъюнкция, ИЛИ) используйте знак + .
  2. Перед логической функцией не надо указывать обозначение функции. Например, вместо F(x,y)=(x|y)=(x^y) необходимо ввести просто (x|y)=(x^y) .
  3. Максимальное количество переменных равно 10 .

Все операции алгебры логики определяются таблицами истинности значений. Таблица истинности определяет результат выполнения операции для всех возможных логических значений исходных высказываний. Количество вариантов, отражающих результат применения операций, будет зависеть от количества высказываний в логическом выражении. Если число высказываний в логическом выражении N, то таблица истинности будет содержать 2 N строк, так как существует 2 N различных комбинаций возможных значений аргументов.

Эквиваленция
Исключающее ИЛИ-НЕ, EQ, XNOR

Диаграмма Венна
Определение x = y <displaystyle x=y>
Таблица истинности ( 1001 ) <displaystyle (1001)>
Логический вентиль
Нормальные формы
Дизъюнктивная x ⋅ y + x ¯ ⋅ y ¯ <displaystyle xcdot y+<overline >cdot <overline >>
Конъюнктивная ( x ¯ + y ) ⋅ ( x + y ¯ ) <displaystyle (<overline >+y)cdot (x+<overline >)>
Полином Жегалкина 1 ⊕ x ⊕ y <displaystyle 1oplus xoplus y>
Принадлежность предполным классам
Сохраняет 0 Нет
Сохраняет 1 Да
Монотонна Нет
Линейна Да
Самодвойственна Нет

Логическая равнозначность или эквивале́нция (или эквивале́нтность [1] ) — это логическое выражение, которое является истинным тогда, когда оба простых логических выражения имеют одинаковую истинность. Двуместная логическая операция обычно обозначается символом ≡ или ↔.

Эквиваленция A ⟺ B <displaystyle Aiff B> — это сокращённая запись для выражения ( ¬ A ∧ ¬ B ) ∨ ( A ∧ B ) <displaystyle (
eg Aland
eg B)lor (Aland B)>

Читайте также:  Как найти человека из топфейса в контакте

Задаётся следующей таблицей истинности:

Таким образом, высказывание AB означает «A то же самое, что B», «A эквивалентно B», «A тогда и только тогда, когда B».

Не надо путать эквиваленцию — логическую операцию с логической эквивалентностью [en] высказываний — бинарным отношением. Связь между ними следующая:

Логические выражения A <displaystyle A> и B <displaystyle B> эквивалентны в том и только в том случае, когда эквиваленция A ⟺ B <displaystyle Aiff B> истинна при всех значениях логических переменных.

Инструкция . При вводе с клавиатуры используйте следующие обозначения:

Клавиша Оператор
! ¬ Отрицание (НЕ)
| | Штрих Шеффера (И-НЕ)
# Стрелка Пирса (ИЛИ-НЕ)
* & Конъюнкция (И)
+ v Дизъюнкция (ИЛИ)
^ Исключающее ИЛИ, сумма по модулю 2 (XOR)
@ Импликация (ЕСЛИ-ТО)
% Обратная импликация
= ≡ (

, ↔)

Эквивалентность (РАВНО)

bc необходимо ввести так: a*b*c+a*b=c+a=b*c
Для ввода данных в виде логической схемы используйте этот сервис.

Правила ввода логической функции

  1. Вместо символа v (дизъюнкция, ИЛИ) используйте знак + .
  2. Перед логической функцией не надо указывать обозначение функции. Например, вместо F(x,y)=(x|y)=(x^y) необходимо ввести просто (x|y)=(x^y) .
  3. Максимальное количество переменных равно 10 .

Все операции алгебры логики определяются таблицами истинности значений. Таблица истинности определяет результат выполнения операции для всех возможных логических значений исходных высказываний. Количество вариантов, отражающих результат применения операций, будет зависеть от количества высказываний в логическом выражении. Если число высказываний в логическом выражении N, то таблица истинности будет содержать 2 N строк, так как существует 2 N различных комбинаций возможных значений аргументов.