Уравнения кирхгофа для цепи переменного тока

Законы Кирхгофа устанавливают соотношения между токами и напряжениями в разветвленных электрических цепях произвольного типа. Законы Кирхгофа имеют особое значение в электротехнике из-за своей универсальности, так как пригодны для решения любых электротехнических задач. Законы Кирхгофа справедливы для линейных и нелинейных цепей при постоянных и переменных напряжениях и токах.

Первый закон Кирхгофа вытекает из закона сохранения заряда. Он состоит в том, что алгебраическая сумма токов, сходящихся в любом узле, равна нулю.

где – число токов, сходящихся в данном узле. Например, для узла электрической цепи (рис. 1) уравнение по первому закону Кирхгофа можно записать в виде I1 – I2 + I3 – I4 + I5 = 0

В этом уравнении токи, направленные к узлу, приняты положительными.

Физически первый закон Кирхгофа – это закон непрерывности электрического тока.

Второй закон Кирхгофа: алгебраическая сумма падений напряжений на отдельных участках замкнутого контура, произвольно выделенного в сложной разветвленной цепи, равна алгебраической сумме ЭДС в этом контуре

где k – число источников ЭДС; m – число ветвей в замкнутом контуре; Ii , Ri – ток и сопротивление i -й ветви.

Так, для замкнутого контура схемы (рис. 2 ) Е1 – Е2 + Е3 = I1R1 – I2R2 + I3R3 – I4R4

Замечание о знаках полученного уравнения:

1) ЭДС положительна, если ее направление совпадает с направлением произвольно выбранного обхода контура;

2) падение напряжения на резисторе положительно, если направление тока в нем совпадает с направлением обхода.

Физически второй закон Кирхгофа характеризует равновесие напряжений в любом контуре цепи.

Расчет разветвленной электрической цепи с помощью законов Кирхгофа

Метод законов Кирхгофа заключается в решении системы уравнений, составленных по первому и второму законам Кирхгофа.

Метод заключается в составлении уравнений по первому и второму законам Кирхгофа для узлов и контуров электрической цепи и решении этих уравнений с целью определения неизвестных токов в ветвях и по ним – напряжений. Поэтому число неизвестных равно числу ветвей b , следовательно, столько же независимых уравнений необходимо составить по первому и второму законам Кирхгофа.

Число уравнений, которые можно составить на основании первого закона, равно числу узлов цепи, причем только ( y – 1) уравнений являются независимыми друг от друга.

Независимость уравнений обеспечивается выбором узлов. Узлы обычно выбирают так, чтобы каждый последующий узел отличался от смежных узлов хотя бы одной ветвью. Остальные уравнения составляются по второму закону Кирхгофа для независимых контуров, т.е. число уравнений b – (y – 1) = b – y +1 .

Контур называется независимым, если он содержит хотя бы одну ветвь, не входящую в другие контуры.

Составим систему уравнений Кирхгофа для электрической цепи (рис. 3 ). Схема содержит четыре узла и шесть ветвей.

Поэтому по первому закону Кирхгофа составим y – 1 = 4 – 1 = 3 уравнения, а по второму b – y + 1 = 6 – 4 + 1 = 3 , также три уравнения.

Произвольно выберем положительные направления токов во всех ветвях (рис. 4 ). Направление обхода контуров выбираем по часовой стрелке.

Составляем необходимое число уравнений по первому и второму законам Кирхгофа

Полученная система уравнений решается относительно токов. Если при расчете ток в ветви получился с минусом, то его направление противоположно принятому направлению.
Потенциальная диаграмма – это графическое изображение второго закона Кирхгофа, которая применяется для проверки правильности расчетов в линейных резистивных цепях. Потенциальная диаграмма строится для контура без источников тока, причем потенциалы точек начала и конца диаграммы должны получиться одинаковыми.

Рассмотрим контур abcda схемы, изображенной на рис. 4. В ветке ab между резистором R1 и ЭДС E1 обозначим дополнительную точку k.

Рис. 4. Контур для построения потенциальной диаграммы

Потенциал любого узла принимаем равным нулю (например, ?а= 0), выбираем обход контура и определяем потенциалы точек контура: ?а = 0, ?к = ?а – I1R1 , ? b = ? к + Е1, ?с = ? b – I2R2 , ? d = ?c – Е2, ? a = ?d + I3R3 = 0

При построении потенциальной диаграммы необходимо учитывать, что сопротивление ЭДС равно нулю (рис. 5 ).

Рис. 5. Потенциальная диаграмма

Законы Кирхгофа в комплексной форме

Для цепей синусоидального тока законы Кирхгофа формулируются так же, как и для цепей постоянного тока, но только для комплексных значений токов и напряжений.

Первый закон Кирхгофа : «алгебраическая сумма комплексов тока в узле электрической цепи равна нулю»

Второй закон Кирхгофа : «в любом замкнутом контуре электрической цепи алгебраическая сумма комплексных ЭДС равна алгебраической сумме комплексных напряжений на всех пассивных элементах этого контура».

См. также: Портал:Физика

Пра́вила Кирхго́фа (часто в технической литературе ошибочно называются Зако́нами Кирхго́фа) — соотношения, которые выполняются между токами и напряжениями на участках любой электрической цепи.

Решения систем линейных уравнений, составленных на основе правил Кирхгофа, позволяют найти все токи и напряжения в электрических цепях постоянного, переменного и квазистационарного тока [1] .

Имеют особое значение в электротехнике из-за своей универсальности, так как пригодны для решения многих задач в теории электрических цепей и практических расчётов сложных электрических цепей.

Применение правил Кирхгофа к линейной электрической цепи позволяет получить систему линейных уравнений относительно токов или напряжений и, соответственно, при решении этой системы найти значения токов на всех ветвях цепи и все межузловые напряжения.

Название «Правила» корректнее потому, что эти правила не являются фундаментальными законами природы, а вытекают из фундаментальных законов сохранения заряда и безвихревости электростатического поля (третье уравнение Максвелла при неизменном магнитном поле). Эти правила не следует путать с ещё двумя законами Кирхгофа в химии и физике.

Содержание

Формулировка правил [ править | править код ]

Определения [ править | править код ]

Для формулировки правил Кирхгофа вводятся понятия узел, ветвь и контур электрической цепи. Ветвью называют участок электрической цепи с одним и тем же током, например, на рис. отрезок, обозначенный R1, I1 есть ветвь. Узлом называют точку соединения трех и более ветвей (на рис. обозначены жирными точками). Контур — замкнутый путь, проходящий через несколько ветвей и узлов разветвлённой электрической цепи. Термин замкнутый путь означает, что, начав с некоторого узла цепи и однократно пройдя по нескольким ветвям и узлам, можно вернуться в исходный узел. Ветви и узлы, проходимые при таком обходе, принято называть принадлежащими данному контуру. При этом нужно иметь в виду, что ветвь и узел могут принадлежать одновременно нескольким контурам.

В терминах данных определений правила Кирхгофа формулируются следующим образом.

Первое правило [ править | править код ]

Первое правило Кирхгофа гласит, что алгебраическая сумма токов ветвей, сходящихся в каждом узле любой цепи, равна нулю. При этом направленный к узлу ток принято считать положительным, а направленный от узла — отрицательным: Алгебраическая сумма токов, направленных к узлу, равна сумме направленных от узла.

∑ j = 1 n I j = 0. <displaystyle sum limits _^I_=0.>

Иными словами, сколько тока втекает в узел, столько из него и вытекает. Это правило следует из фундаментального закона сохранения заряда.

Второе правило [ править | править код ]

Второе правило Кирхгофа (правило напряжений Кирхгофа) гласит, что алгебраическая сумма напряжений на резистивных элементах замкнутого контура равна алгебраической сумме ЭДС, входящих в этот контур. Если в контуре нет источников ЭДС (идеализированных генераторов напряжения), то суммарное падение напряжений равно нулю:

Читайте также:  Как называется игра где надо проходить уровни

для постоянных напряжений ∑ k = 1 n E k = ∑ k = 1 m U k = ∑ k = 1 m R k I k ; <displaystyle sum _^E_=sum _^U_=sum _^R_I_;> для переменных напряжений ∑ k = 1 n e k = ∑ k = 1 m u k = ∑ k = 1 m R k i k + ∑ k = 1 m u L k + ∑ k = 1 m u C k . <displaystyle sum _^e_=sum _^u_=sum _^R_i_+sum _^u_+sum _^u_.>

Это правило вытекает из 3-го уравнения Максвелла, в частном случае стационарного магнитного поля.

Иными словами, при полном обходе контура потенциал, изменяясь, возвращается к исходному значению. Частным случаем второго правила для цепи, состоящей из одного контура, является закон Ома для этой цепи. При составлении уравнения напряжений для контура нужно выбрать положительное направление обхода контура. При этом падение напряжения на ветви считают положительным, если направление обхода данной ветви совпадает с ранее выбранным направлением тока ветви, и отрицательным — в противном случае (см. далее).

Правила Кирхгофа справедливы для линейных и нелинейных линеаризованных цепей при любом характере изменения во времени токов и напряжений.

Особенности составления уравнений для расчёта токов и напряжений [ править | править код ]

Если цепь содержит p <displaystyle p> узлов, то она описывается p − 1 <displaystyle p-1> уравнениями токов. Это правило может применяться и для других физических явлений (к примеру, система трубопроводов жидкости или газа с насосами), где выполняется закон сохранения частиц среды и потока этих частиц.

Если цепь содержит m <displaystyle m> ветвей, из которых содержат источники тока ветви в количестве m i <displaystyle m_> , то она описывается m − m i − ( p − 1 ) <displaystyle m-m_-(p-1)> уравнениями напряжений.

  • Правила Кирхгофа, записанные для p − 1 <displaystyle p-1>узлов или m − ( p − 1 ) <displaystyle m-(p-1)>контуров цепи, дают полную систему линейных уравнений, которая позволяет найти все токи и все напряжения.
  • Перед тем, как составить уравнения, нужно произвольно выбрать:
  • положительные направления токов в ветвях и обозначить их на схеме, при этом не обязательно следить, чтобы в узле направления токов были и втекающими, и вытекающими, окончательное решение системы уравнений всё равно даст правильные знаки токов узла;
  • положительные направления обхода контуров для составления уравнений по второму закону, с целью единообразия рекомендуется для всех контуров положительные направления обхода выбирать одинаковыми (напр.: по часовой стрелке).
  • Если направление тока совпадает с направлением обхода контура (которое выбирается произвольно), падение напряжения считается положительным, в противном случае — отрицательным.
  • При записи линейно независимых уравнений по второму правилу Кирхгофа стремятся, чтобы в каждый новый контур, для которого составляют уравнение, входила хотя бы одна новая ветвь, не вошедшая в предыдущие контуры, для которых уже записаны уравнения по второму закону (достаточное, но не необходимое условие).
  • В сложных непланарных графах электрических цепей человеку трудно увидеть независимые контуры и узлы, каждый независимый контур (узел) при составлении системы уравнений порождает ещё 1 линейное уравнение в определяющей задачу системе линейных уравнений. Подсчёт количества независимых контуров и их явное указание в конкретном графе развит в теории графов.
  • Пример [ править | править код ]

    Количество узлов: 3.

    p − 1 = 2 <displaystyle p-1=2>

    Количество ветвей (в замкнутых контурах): 4. Количество ветвей, содержащих источник тока: 0.

    m − m i − ( p − 1 ) = 2 <displaystyle m-m_-(p-1)=2>

    Количество контуров: 2.

    Для приведённой на рисунке цепи, в соответствии с первым правилом, выполняются следующие соотношения:

    < I 1 − I 2 − I 6 = 0 I 2 − I 4 − I 3 = 0 <displaystyle <eginI_<1>-I_<2>-I_<6>=0\I_<2>-I_<4>-I_<3>=0end>>

    Обратите внимание, что для каждого узла должно быть выбрано положительное направление, например, здесь токи, втекающие в узел, считаются положительными, а вытекающие — отрицательными.

    Решение полученной линейной системы алгебраических уравнений позволяет определить все токи узлов и ветвей, такой подход к анализу цепи принято называть методом контурных токов.

    В соответствии со вторым правилом, справедливы соотношения:

    < U 2 + U 4 − U 6 = 0 U 3 + U 5 − U 4 = 0 <displaystyle <eginU_<2>+U_<4>-U_<6>=0\U_<3>+U_<5>-U_<4>=0end>>

    Полученные системы уравнений полностью описывают анализируемую цепь, и их решения определяют все токи и все напряжения ветвей. Такой подход к анализу цепи принято называть методом узловых потенциалов.

    О значении для электротехники [ править | править код ]

    Правила Кирхгофа имеют прикладной характер и позволяют наряду и в сочетании с другими приёмами и способами (метод эквивалентного генератора, принцип суперпозиции, способ составления потенциальной диаграммы) решать задачи электротехники. Правила Кирхгофа нашли широкое применение благодаря простоте формулировки уравнений и возможности их решения стандартными способами линейной алгебры (методом Крамера, методом Гаусса и др.).

    Значение в математике [ править | править код ]

    Первое правило Кирхгофа может быть сформулировано в матричном виде. Именно, пусть электрическая цепь состоит из n <displaystyle n> узлов. Составим матрицу A = < a i j >i , j = 1 n <displaystyle A=>_^> , где a i j <displaystyle a_> при i ≠ j <displaystyle i
    eq j> есть проводимость ветви, соединяющеей узлы с номерами i <displaystyle i> и j <displaystyle j> (если они не соединены, можно мысленно соединить их ветвью нулевой проводимости). Величины a i i <displaystyle a_> положим равными ∑ i = 1 , i ≠ j n ( − a i j ) <displaystyle sum _

    i
    eq j>^(-a_)> . Пусть U <displaystyle U> — потенциал, который мы рассматриваем как функцию, определённую на множестве узлов (или, что то же самое, вектор u = ( U 1 , U 2 , … , U n ) <displaystyle mathbf =(U_<1>,U_<2>,dots ,U_)> в n <displaystyle n> -мерном пространстве R n <displaystyle mathbb ^> ). Тогда по определению проводимости имеем I i j = a i j ( U j − U i ) <displaystyle I_=a_(U_-U_)> , где I i j <displaystyle I_> — ток в ветви, идущей из вершины i <displaystyle i> в вершину j <displaystyle j> . Стало быть, первое правило Кирхгофа для j <displaystyle j> -того узла можно записать как ∑ i = 1 , i ≠ j n I i j = ∑ i = 1 , i ≠ j n a i j ( U j − U i ) = 0 <displaystyle sum _

    i
    eq j>^a_(U_-U_)=0> , или же ∑ i = 1 , i ≠ j n a i j U j + ( ∑ i = 1 , i ≠ j n ( − a i j ) ) U i = 0 <displaystyle sum _

    i
    eq j>^(-a_)
    ight)U_=0> , или же, учитывая определение диагональных элементов матрицы, как ∑ i = 1 n a i j U j = 0 <displaystyle sum _^
    a_U_=0> . В левой части равенства легко узнать координату произведения матрицы A <displaystyle A> на вектор-столбец u <displaystyle mathbf > . Итак, первое правило Кирхгофа в матричном виде гласит: A u = 0 <displaystyle Amathbf =0> .

    В таком виде оно допускает обобщение на проводящие поверхности. У криволинейной поверхности проводимость зависит не только от точки, но и от направления. Иными словами, проводимость является функцией на касательных векторах к поверхности. Если считать, что на касательных пространствах она хорошо приближается положительно определённой квадратичной формой, можно говорить о ней как о римановой метрике g <displaystyle g> (отличающейся от расстояния на поверхности как геометрической форме, учитывающей неизотропность её электрических свойств). Каждая точка поверхности может служить узлом, и потому потенциал будет уже не вектором, а функцией u <displaystyle u> на поверхности. Аналогом же матрицы проводимостей будет оператор Лапласа — Бельтрами Δ g <displaystyle Delta _> метрики-проводимости, который действует на пространстве гладких функций. Первое правило Кирхгофа для поверхности гласит ровно то же: Δ g u = 0 <displaystyle Delta _u=0> . Иначе говоря, потенциал есть гармоническая функция.

    В связи с этим матрицу A <displaystyle A> , сопоставляемую произвольному взвешенному графу, за исключением диагонали равную матрице смежности, иногда называют дискретным лапласианом. Аналоги теорем о гармонических функциях, такие как существование гармонической функции в области с краем при заданных значениях на крае, получающейся свёрткой с некоторым ядром, имеют место и для дискретных гармонических функций. Обратно, проводящая поверхность может быть приближена сеткой сопротивлений, и дискретные гармонические функции на этой сетке приближают гармонические функции на соответствующей поверхности. На этом обстоятельстве основан интегратор Гершгорина, аналоговая вычислительая машина, использовавшаяся для решения уравнения Лапласа в 30-х — 70-х годах XX века.

    В случае проводящей поверхности вместо разности потенциалов имеет смысл говорить об 1-форме d u <displaystyle du> . Связанное с ней при помощи метрики-проводимости векторное поле g r a d g ( u ) <displaystyle mathrm _(u)> — и есть электрический ток на этой поверхности. Согласно первому правилу Кирхгофа, эта 1-форма тоже гармонична (то есть лежит в ядре ходжева лапласиана, определённого на дифференциальных формах). Это даёт ключ к тому, как правильно формулировать закон Кирхгофа для случая, когда поле не потенциально: именно, 1-форма, получающаяся из тока, рассматриваемого как векторное поле, при помощи проводимости, рассматриваемой как риманова метрика, должна быть гармонична. Зная электродвижущую силу вокруг каждого топологически нетривиального контура на поверхности, можно восстановить силу и направление тока в каждой точке, притом единственным способом. В частности, размерность пространства всевозможных токов равна размерности пространства топологически нетривиальных контуров. Этот факт был одним из оснований для открытия двойственности Пуанкаре; то обстоятельство, что электродвижущие силы определяют однозначно ток (гармоническую 1-форму), является частным случаем теории Ходжа для 1-форм (теория Ходжа утверждает, что на римановом многообразии всякий класс когомологий де Рама представляется гармонической формой, притом только одной).

    Читайте также:  Сони вегас про как изменить формат видео

    Закон излучения Кирхгофа [ править | править код ]

    Закон излучения Кирхгофа гласит — отношение излучательной способности любого тела к его поглощательной способности одинаково для всех тел при данной температуре для данной частоты для равновесного излучения и не зависит от их формы, химического состава и проч.

    Закон Кирхгофа в химии [ править | править код ]

    Закон Кирхгофа гласит — температурный коэффициент теплового эффекта химической реакции равен изменению теплоёмкости системы в ходе реакции.

    Первый закон Кирхгофа

    Формулировка: Сумма всех токов, втекающих в узел, равна сумме всех токов, вытекающих из узла.

    Или Алгебраическая сумма всех токов в узле равна нулю.

    Поясню первый закон Кирхгофа на примере рисунка 2.

    Здесь ток I1– ток, втекающий в узел , а токи I2 и I3 — токи, вытекающие из узла.

    Что бы подтвердить справедливость формулировки №2, перенесем токи I2 и I3 в левую часть выражения (1), тем самым получим:

    Знаки «минус» в выражении (2) и означают, что токи вытекают из узла.

    Знаки для втекающих и вытекающих токов можно брать произвольно, однако в основном всегда втекающие токи берут со знаком «+», а вытекающие со знаком «-» (например как получилось в выражении (2)).

    Второй закон Кирхгофа.

    Формулировка: Алгебраическая сумма ЭДС, действующих в замкнутом контуре, равна алгебраической сумме падений напряжения на всех резистивных элементах в этом контуре.

    Здесь термин «алгебраическая сумма» означает, что как величина ЭДС так и величина падения напряжения на элементах может быть как со знаком «+» так и со знаком «-».

    Баланс мощностейявляется следствием закона сохранения энергии — суммарная мощность вырабатываемая (генерируемая) источниками электрической энергии равна сумме мощностей потребляемой в цепи.

    Условие баланса мощностей заключается в том, что сумма мощностей всех элементов цепи равна нулю. В цепи постоянного тока мощность участка цепи равна произведению силы тока на напряжение на этом участке. Если направление силы тока и напряжения на каком-либо участке не совпадает, перед соответствующим слагаемым ставится знак «–».

    №3

    Закон Ома — это физический закон, определяющий связь между напряжением, силой тока и сопротивлением проводника в электрической цепи.

    Назван в честь его первооткрывателя Георга Ома.
    Закон Ома гласит:
    Сила тока в однородном участке цепи прямо пропорциональна напряжению, приложенному к участку, и обратно пропорциональна электрическому сопротивлению этого участка.
    И записывается формулой: I=U/R

    Где: I — сила тока (А) , U — напряжение (В) , R — сопротивление (Ом) .
    что закон Ома можно применять для расчёта гидравлических, пневматических, магнитных, электрических, световых, тепловых потоков и т. д. ,

    Применение законов Кирхгофа для цепей переменного тока.

    законы Ома и Кирхгофа справедливы для мгновенных токов и напряжений.

    Сумма комплексных токов в проводах, сходящихся в узле электрической цепи, равна нулю:

    Сумма комплексных ЭДС, действующих в замкнутом контуре, равна сумме комплексных падений напряжений в ветвях этого контура:

    ПОЛУЧЕНИЕ ЭДС

    Простейший трёхфазный генератор состоит из трёх одинаковых обмоток, скреплённых между собой под углами 120° и вращающихся в однородном магнитном поле В с угловой скоростью ω (рис. 1). Это – фазные обмотки, или фазы генератора. Их обозначают буквами А, В, С, или же цифрами 1, 2, 3. В настоящей работе используется цифровое обозначение фаз.

    В промышленных трёхфазных генераторах фазные обмотки являются неподвижными и размещаются под углами 120° в пазах статора, как показано на рис. 2. а вращающееся магнитное поле создаётся обмоткой возбуждения, уложенной в пазах ротора и питаемой от отдельного генератора постоянного напряжения. Ротор вращается каким-либо двигателем, например, гидро- или паротурбиной.

    Для уменьшения количества проводов, необходимых для соединения нагрузки с источником питания, или же для уменьшения количества пульсаций в выпрямителях, или же повышения передаваемой мощности без повышения напряжения сети используют разные схемы соединения обмоток, как нагрузки, так и источника. Наиболее распространенными схемами соединения являются треугольник и звезда.

    При соединении звездой концы обмоток фаз соединяются вместе в одной точке (в нашем случае показаны как x,y,z), которая носит название нейтральной точки или нуля, и обозначается буквой N. Также нейтральная точка (нейтраль) или ноль может быть соединена с нейтралью источника, а может быть и не соединена. В случае, когда нейтрали источника и приемника электрической энергии соединены, такая система будет называться четырехпроводной, а в случае если не соединены – трехпроводной.

    А вот при соединении в треугольник концы обмоток не соединяются в общую точку, а соединяются с началом следующей обмотки. А именно, конец обмотки фазы А (на схеме указан х) соединяется с началом фазы В, а конец фазы (y) соединяется с началом фазы С, и, как вы наверно уже догадались, конец фаз С (z) с началом фазы А. Также следует помнить, что если при соединении в звезду система может быть как трехпроводной, так и четырехпроводной, то при соединении в треугольник система может быть только трехпроводной.

    Принцип вращения ротора

    Принцип работы ротора основан на электромагнитном законе Фарадея. Вращается он благодаря воздействию электродвижущей силы, возникающей в результате взаимодействия магнитных потоков и обмотки ротора. На деле это выглядит так: между статором, ротором и их обмотками существует некий зазор, сквозь который проходит вращающийся магнитный поток. В результате этого в проводниках ротора возникает напряжение, которое и является причиной образования ЭДС.

    Двигатели с замкнутой цепью роторных проводников работают немного иначе. В этих типах двигателей используются короткозамкнутые роторы, в которых направление движения тока и электродвижущей силы задается правилом Ленца, согласно которому ЭДС противодействует возникновению тока. Вращение ротора происходит благодаря магнитному потоку, движущемуся между ним и неподвижным проводником.

    Таким образом, для уменьшения относительной скорости, ротор начинает синхронное вращение с магнитным потоком на обмотке статора, стремясь к вращению в унисон. При этом частота электродвижущей силы ротора равняется частоте питания статора.

    Трансформатор – статистический электромагнитный аппарат преобразующий систему переменного тока одного напряжения в систему переменного тока другого напряжения.

    Назначение: трансформаторы служат для передачи и распределения электроэнергии потребителей.

    Трансформаторы бывают: повышающие, понижающие однофазные, трех и многофазные. Силовые, измерительные, испытательные.

    Активными элементами трансформатора являются

    1. магнитопровод
    2. обмотки
    Магнитопровод с обмоткой помещается в бак с трансформатором маслом, которое служит для изоляции и охлаждения

    Действие трансформатора основано на явлении взаимной индукции. Если первичную обмотку трансформатора включить в сеть источника переменного тока, то по ней будет протекать переменный ток, который создаст в сердечнике трансформатора переменный магнитный поток. Этот магнитный поток, пронизывая витки вторичной обмотки, будет индуктировать в ней э. д. с. Если вторичную обмотку замкнуть на какой-либо приемник энергии, то под действием индуктируемой э. д. с. по этой обмотке и через приемник энергии начнет протекать ток

    Читайте также:  Как полностью очистить macbook

    №11

    ПРИНЦИП ДЕЙСТВИЯ ОДНОФАЗНОГО ТРАНСФОРМАТОРА. КОЭФФИЦИЕНТ ТРАНСФОРМАЦИИ.

    Работа трансформатора основана на явлении вза­имной индукции, которое является следствием закона электромагнитной индукции.

    Рассмотрим более подробно сущность процесса трансформации тока и напряжения. При подключении первичной обмотки трансформа­тора к сети переменного тока напряжением по обмотке начнет проходить ток, который создаст в магнитопроводе пе­ременный магнитный по­ток. Магнитный поток, пронизывая витки вторичной обмотки, индуцирует в ней, которую можно использовать для питания нагрузки.

    . Отношение чисел витков обмоток трансформатора называют коэффициентом трансформа­ции k.

    Таким образом, коэффициент трансформации по­казывает, как относятся действующие значения ЭДС вторичной и первичной обмоток.

    В любой момент времени отноше­ние мгновенных значений ЭДС вторичной и первичной обмоток равно коэффициенту трансформации.

    Отношение напряжений на обмотках нена­груженного трансформатора указывается в его пас­порте.

    ПРИНЦИП ДЕЙСТВИЯ подробный: Под действием подведенного переменного напряжения U1в первичной обмотке трансформатора возникает переменный ток I1, который, проходя по виткам обмотки трансформатора, возбуждает в сердечнике магнитопровода переменный магнитный потокФ1. Этот поток индуцируете1и е2в обмотках трансформатора. ЭДСе1 уравновешивает основную часть U1источника, ЭДСе2 создает напряжениеU2на выходных зажимах трансформатора. При замыкании вторичной цепи возникает токI2, который образует собственный магнитный потокФ2, накладывающийся на поток первичной обмотки. В результате создается общий магнитный поток Ф =Фmsin2pft (Фm— амплитудное значение магнитного потока трансформатора;f— частота переменного тока), сцепленный с витками обеих обмоток трансформатора. ПотокФназывается главным потоком или потоком взаимной индукции. При изменении этого потока в обмотках трансформатора индуцируются основные ЭДС –е1и е2.

    Коэффициент трансформации трансформатора — это величина, выражающая масштабирующую (преобразовательную) характеристику трансформатора относительно какого-нибудь параметра электрической цепи (напряжения, силы тока, сопротивления и т. д.).

    Для силовых трансформаторов, ГОСТ 16110-82 определяет коэффициент трансформации — как «отношение напряжений на зажимах двух обмоток в режиме холостого хода», и «принимается равным отношению чисел их витков»

    ТРЕХФАЗНЫЕ ТРАНСФОРМАТОРЫ

    В линиях электропередачи используют в основном трехфазные силовые трансформаторы.

    Магнитопровод трехфазного трансформатора имеет три стержня, на каждом из которых размещают­ся две обмотки одной фазы.

    Для подключения трансформатора к линиям элек­тропередачи на крышке бака имеются вводы, пред­ставляющие собой фарфоровые изоляторы, внутри которых проходят медные стержни. Вводы высшего напряжения обозначают буквами А, В, С, вводы низ­шего напряжения — буквами а, b, с. Ввод нулевого провода располагают слева от ввода а и обозначают О.

    Особенностью трехфазного трансформато­ра является зависимость коэффициента трансформа­ции линейных напряжений от способа соединения об­моток.

    Применяются главным образом три способа соеди­нения обмоток трехфазного трансформатора:

    1) соединение первичных и вторичных обмоток звездой (рис. 7.8, а);

    2) соединение первичных обмоток звез­дой, вторичных — треугольником (рис. 7.8, б);

    3) со­единение первичных обмоток треугольником, вторич­ных—звездой (рис. 7.8, в).

    Обозначим отношение чисел витков обмоток одной фазы буквой k, что соответствует коэффициенту транс­формации однофазного трансформатора и может быть выражено через отношение фазных напряжений:

    при одном и том же числе витков обмоток трансформатора можно в √3 раза увеличить или уменьшить его коэффициент трансформации, вы­бирая соответствующую схему соединения обмоток.

    Специальные трансформаторы – это устройства, которые позволяют изменить характеристики электрического тока: сбалансировать фазы, снизить пульсации, изменить число фаз, стабилизировать ток, изменить частоту тока (умножители частоты) или выполнить усиление (магнитные усилители).

    При пуске электрических двигателей а также различных лабораторных установок, в питании некоторых выпрямителей, в регулировании напряжения используют автотрансформаторы. Широко используют автотрансформаторы и в качестве бытовых электроаппаратов, предопределённых для повышения напряжения от 110 до 220 В или понижения его от 220 до 110 В.

    Для понижения напряжения от 220 или же 380 В до 60-70 В рассчитан сварочный трансформатор (дуговая электросварка) или до 14 В (контактная сварка). На работу при больших силах тока – порядка 300 А, предназначены сварочные трансформаторы, и при режиме короткого замыкания

    Для включения измерительных приборов, а также реле, в цепи высокого напряжения используют измерительные трансформаторы. Как правило, измерительные трансформаторы считаются понижающими трансформаторами. Вследствие чего они позволяют использовать обычные приборы для замера больших напряжений, токов, мощностей, увеличивая с этим безопасность работы обслуживающего персонала.

    Силовой трансформатор — трансформатор, предназначенный для преобразования электрической энергии в электрических сетях и в установках, предназначенных для приёма и использования электрической энергии.

    Трансформа́тор то́ка — трансформатор, питающийся от источника тока. Типичное применение — для снижения первичного тока до величины, используемой в цепях измерения, защиты, управления и сигнализации

    Импульсный трансформатор — это трансформатор, предназначенный для преобразования импульсных сигналов с длительностью импульса до десятков микросекунд с минимальным искажением формы импульса

    Первый закон Кирхгофа

    Формулировка: Сумма всех токов, втекающих в узел, равна сумме всех токов, вытекающих из узла.

    Или Алгебраическая сумма всех токов в узле равна нулю.

    Поясню первый закон Кирхгофа на примере рисунка 2.

    Здесь ток I1– ток, втекающий в узел , а токи I2 и I3 — токи, вытекающие из узла.

    Что бы подтвердить справедливость формулировки №2, перенесем токи I2 и I3 в левую часть выражения (1), тем самым получим:

    Знаки «минус» в выражении (2) и означают, что токи вытекают из узла.

    Знаки для втекающих и вытекающих токов можно брать произвольно, однако в основном всегда втекающие токи берут со знаком «+», а вытекающие со знаком «-» (например как получилось в выражении (2)).

    Второй закон Кирхгофа.

    Формулировка: Алгебраическая сумма ЭДС, действующих в замкнутом контуре, равна алгебраической сумме падений напряжения на всех резистивных элементах в этом контуре.

    Здесь термин «алгебраическая сумма» означает, что как величина ЭДС так и величина падения напряжения на элементах может быть как со знаком «+» так и со знаком «-».

    Баланс мощностейявляется следствием закона сохранения энергии — суммарная мощность вырабатываемая (генерируемая) источниками электрической энергии равна сумме мощностей потребляемой в цепи.

    Условие баланса мощностей заключается в том, что сумма мощностей всех элементов цепи равна нулю. В цепи постоянного тока мощность участка цепи равна произведению силы тока на напряжение на этом участке. Если направление силы тока и напряжения на каком-либо участке не совпадает, перед соответствующим слагаемым ставится знак «–».

    №3

    Закон Ома — это физический закон, определяющий связь между напряжением, силой тока и сопротивлением проводника в электрической цепи.

    Назван в честь его первооткрывателя Георга Ома.
    Закон Ома гласит:
    Сила тока в однородном участке цепи прямо пропорциональна напряжению, приложенному к участку, и обратно пропорциональна электрическому сопротивлению этого участка.
    И записывается формулой: I=U/R

    Где: I — сила тока (А) , U — напряжение (В) , R — сопротивление (Ом) .
    что закон Ома можно применять для расчёта гидравлических, пневматических, магнитных, электрических, световых, тепловых потоков и т. д. ,

    Применение законов Кирхгофа для цепей переменного тока.

    законы Ома и Кирхгофа справедливы для мгновенных токов и напряжений.

    Сумма комплексных токов в проводах, сходящихся в узле электрической цепи, равна нулю:

    Сумма комплексных ЭДС, действующих в замкнутом контуре, равна сумме комплексных падений напряжений в ветвях этого контура: